AD-A100 189 ON THE FORMAL SPECIFICATION OF COMPUTER COMMUNICATION [}
PROTOCOLS(U) MARYLAND UNIV COLLEGE PARK DEPT OF
COMPUTER SCIENCE K F SHOTTING DEC 80 TR- 973

UNCLASSIFIED AFOSR-TR-81-0491 AFOSR-78-3654

|0 &= iz

i dd o
EEEE

==
s
o

Il &
L =

22 Yt s

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANLARTS 19t- 4

<

BIC FiLE copy

AD A .

COMPUTER SCIENCE
TECHNICAL REPORT SERIES DT!(~

VE‘ ST v,
1y vy :
3“)0'\ 1 e

7 ¥

E

UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND
20742

Approved for public release}
distributionunlimited.

g1 G 12 035 . .

F’“ e

[£7)
* Lo
fai.'dunq

Technical Report TR-973 December 1980
AFOSR78-3654

On The Formal Specification Of
Computer Communication Protocols

Kenneth F. Shotting

DTIC

Bl ~
:3 JUN 1 = 1981
Abstract ?mﬁ;‘ [

E

* This thesis gives a framework for specifying and verifying
communications protocols. It views a communication system
as a hierarchy of abstract machines using the Hierarchical
Development Methodology/of SRI International. The major
results are a framework for formally specifying protocols,
the formal specification of a particular protocol and an
evaluation of the applicability of HDM to protocol
specifications. It includes a specification of the Internet
Protocol developed for the Department of Defense as a
sample use of the methods advocated in the thesis. ... -

AIR FORCE OFFICE CF SCIENTIFIC RESEARCH (AFSC)
NOTICE OF TRAMIMITIAL TO DDC

This techuical roport has Lesn reviewed and 1is
approved for public rilease 1AW AFR 190-12 (7b).
Distribution i3 unlimited.

A. D. BLOSE

Technical Information Officer

This research was supported in part by the Air Force Office of
Scientific Research under grant AFOSR-78-3654.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When DaanEnlc-n.-d)‘

REBORT DOCUMENTATION PAGE HEFORE COMPLETING FORM

4 * } 2. GCVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
1-8491°

, -81-0)0 Alco 167
ﬁ S 5. TYPE OF REPO _Jr__

/4 |loN THE EORMAL SPECIFICATION OF COMPUTER COIZMUNICA~ S| TATETIPT 5L
~—1{iTIOM PROTOCOLS ,

—) “Er-mvcﬁ'u‘ms 03G. REPORT NUMBER
/%] 1R-973 |
o, MQR(A - . Lf 8 'RACT OR GRANINUMBER(s)
eh ¥ .) /
~ vVKenneth F./Shotting "} AFOSR-78-3654 |
TS S
3. PERFORMING ORGANIZATION NAME AND ADDRESS 10. i:ggR&AwOERLKEms:‘TT'NpUﬁROBJEE}gST' TASK
Department of Computer Science
University of Maryland PEB1I02F o
. b v, i
College Park D 20740 [:| 23dafaz s,
V7. CONTROLLING OFFICE NAME AND ADDRESS '—/ 1 ‘.' REPORTY DATE
Alr Force Office of Scientific Research/Ni o - DEC 80
Bolling AF8 DC 20332 égmMBEROFPAG?t~: ,
VAR CA|
T4 WMONITORING ASEN.Y NAME & ADDRESS(if ditterent from Controlling Oflice) '5. SECURITY CLASS. ol TAIs T 65‘2 !
UNCLASSIFIED
158, DEC{L ASSIFICATION DOWNGRADING
SCHEDULE

16 DISTRIBUTION STATEMENT (of this Repart)

Aprroved Tor public release; distribution unlimited.

17 DISTRISUTION STATEMENT (of the abatract entered in Block 20, if different {rom Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse sije if necesaary and tdentily by block number)

20. ABSTRACT (Continue on reverse side !f necossary and ldentify by block number)

This thesis gives a framework for specifying and verifying communications
protocols., It views a communication system as a hierarchy of abstract machines
using the Hierarchical Development Methodology of SRI International. The major
results are a framework for formally specifying protocols, the formal specifica-
tion of a particular prococol and an evaluation of the applicability of HDM to
protocol specifications. It includes a specification of the Internct Protocol

developed for the Department of Defense as a sample use of the methods 1
FORM
]
DD ,)an73 1473 eoiTion oF 1 NOV 8515 0BSOLETE UNCLASSIFIED o
A SECURITY CLASSIFICATION OF TH(S PAGE (When De o Entered) . i
G4y, |
2raemay, ndr VAT —
" PR v
B ", e ":”-‘&_‘f , T -

Table of Contents

lo Introduction seceevcesoeinesoescvacsovncassansasensnansennnss |
2. Specification and Verification eceeececsvevcesncanccscsccnss &
a. Choosing a !1'ethodolofy ceeevescnceaccensvsssanecssscssse 8

b. Specification and verification rethodologies ssasecsss 11

L. CYPSY eeceavevscanscascssacacnnsonsosoonessnseasnssas 11

2. Hierarchical Development Methodology (HDM) ...eeeeea 12

Je AfFfirm ecescecenossceovcnncnnscscnassnncscnsvoscsess lé

4. Stanford Pascal Verifier eeecesoessvecvsscanssanses 15

c. Hierarchical Development !ethodology cseeeescecsceees 15

de SPECTAL ctteecvceetoaccssoonescetsosncsacnosnvoasssnsnee LG

3. A hierarchy Of DrotoCOlS eeececscescacsssssassencccnsocasas 23
a+ Choosing a pProtocol seeeicecescccconccsconssssascasss 26

b. Distributing modules amonz network entities sseceecess 29

4. The Internet ProtocCol ececescscescssnsscccssessssscnncsesass 30
3e PUIPOSE cesseccetvcesaccctonososoesrsonascsssanssasses 32

b. Interface description ececcseccscscecscossssssscnasanss 33

c. Internal description ceeeseccecscosessccssaseaacocsnnse 34

d. Interface vs. internal description .teeecececevccances 43

5. User Interface Formal Specifications seeessececasecasssnsss 45
ae liodule: Inet™send ceeesescsaccccasscncsasascansssnase 45

be Module: INet™recV scevecseovsescnccssosnscascsnssseanse 50

Ce Module: VIrt™net ccececececscscecsssoonosncenssenssascens 53

6. Internet Protocol in Detail seecececsesscecesvssssrasscnnns 55

8. :!Odule: Ph)’S~Send @8 88 st s rte s cass et REetoennenaS 59

ii

be Module: PhvSTrecV cecesesscscescncecncssosasvsensnanes 63
c. Module: Phys™netl ceecececsvecscsscscascancosnscsccacoce 65
de 1'odule: INet Il seessssscsccacveccsncssacsosacsssnoas 07
e. 0dule: Peuasserble sececscccessnscecsssnssasccssnnsnes 71

f. liodule: Send"ftaf’, @ 0eos 0020000000000 s000 00000t 75

£+ llodule: ReCVTEras .cecececcccncccnncsscoscnnssssasneee &0

7. IMplementation eeeeessssscecscccccsersosacasnsonacrasnannaes &2
L €. Problems Encountered in the Specification Process ..eeveee. 85
a. Problems Due to the Protocol Pescription eeececeeesss 55

1. Physical addresSSes eseececesecssceoscsccncsasasnsans 89

2. Problems with Record Route Option secesesessacccces 55

3. The visibility of fragmentation .eeeececsecscscecses &7

be. Problems Due to the !ethodology sveecesssnsecccesaass 88

1. Data representation ccceeecencesMdcosssssacsccaases &8

2. AsSsSertion language ceeecessccecsecsesvsccsccassavacss EF

3. Specification environment eesesesccccessssscescssas RO

4. Exception handling ccceececesecncecencasssecsncesss 89

G. ConNCluSions eveececsscsccvocrvoncccsosvesssoeososssncsassns 8O
ClOSSATY sseeessssnsessssocssccssscstcsoetsacnssassacseaneassasas 92

Bibliography L R R R I R N N N N N N N R R R R T 93

) I
Accenniop Tor

T pTTs T X
T T
Vel 3 {7

i ot 111

Fipure
Figure
Figcure
Fipure
Figure
Figure

Figure

Figure -

Figure

20 P00 L0000 000003000080 0000800000 PLERBEEEIETCBOIBRESSTDTDES

@ 8 8 6 00000000000 0000030000000000880s0000C00BSICEIEBIOIOIETSTOSPTDS

® 9 00 0 C0 PN RN EOB LT AP PORGNOOREE0E0NNRSICENONINLSISLGCGIAECGTITEETDOS

9 600 0200000000000 000¢E0 000000000 rsAsseRIENSIROIRESIEOIESIETNLE

® 06 %8 €06 00000000 LEPNEPiT B e000 0000000000 PERNIOIOOETONTOE

@ 00 0 080 CEN LSS0 LN PP PEPERN0EI0EIITNLISIOEESELIOICOOO TS

€@ 0 00 00 0 E VL ECLEPSORTPREE0P G000 000CONRRSEOOESOIDROONGBRIOETSTE

2 000 F 00 000000000 REE0C00E00PLEP0RECCLOEOEIERIOIETROIEOIBSIOBRDOESETN

iv

5

b

16

24

25

35

57

59

OM THE FORMAL SPECIFICATION OF
COMPUTER COM:IUNICATION PROTOCOLS
by
Kenneth F. Shotting

1. INTRODUCTIOL:

Computer networking, though only slightly over ten vears old, has
already tecome widespread. Numerous networks now exist using
various networking technologies and communication protocols. It
has given tise to a whole new specialized area in the realm of corputer
engineering and science. Companies have been formed over this
period, such as TELENET and TYMSHARE, with their major purpose beiny
to offer networking services to clients. Interest is prowing
in having the ability to interconnect networks using different

technologies.

The goal of internetworking is to allow a user on any svstem on any
network to access data or services on any other syster in as transparent
a ranner as possible. This is a long terr goal, however a wmodel for
such a system exists. The term catenet (concatenated network) has been

coined for a collection of connected networks [Cer78].

The interconnection of networks leads to many technical problers.

Although different networks rmay provide similar services, it is of ten

-1 -

. - R . E o e A G ———— i —— e~

difficult to map these similar services across networks because of

differences 1in the underlyingy protocols and the lack of a eood
definition of the protocols. (Quite often the best definition of the
protocols 1s the running code. Problems of this nature point out the

need for an understandable definition of communications protocols.

Network interconnection is not completely responsible for such
problems, it just exacerbates them; even without network
interconnection problers exist. Problems are known to exist on the

ARPAnet (1).

Although some problems can be attributed to "growing pains", rany
are just another manifestation of the general probelms experienced by
sof tware -- protocols must wultirately be cast into software. As
such protocol irplementation efforts have suffered the normal problens
suffered by large software systems: the software tends to be corplex,

expensive, and difficult to understand, modify or maintain and late.

(1) A few examples. The ARPAnet Network Control Protocol (NCP)
has occasionally dropped or duplicated parts of messages. The
ARPAnet File Transfer Protocol (FTP) has truncated and
garbled files being transferred. The FTP problems rarely occur
when using two systems running essentially the same code
(although problems doubtlessly exist in this case), but
between two systems running different implementations of the
FTP protocol (e.g. one for TOPS-20; one for UNIX). In one case
getting a file from the TOPS-20 systern then sending it back
resulted 1in differences, whereas the same setting used to send
the file to the ULIX system then get it back gave an identity
mapping. In another instance the FTP protocol was randomly
setting "unusea" bits. Adrittedly the transfer was somewhat
nonstandard. The file vas an executable file stored as
ASCII characters; however, neither the TOPS=-20 nor the UNIX
documentation warned that problems could occur if a character
file transfer used the full ASCII character set. Also, these were
not occasional network errors, but repeatable occurrences.

-2 -

Our goal in this thesis is to cxplore the use of formal development

techniques in the process of designing and implementing protocols.
Since it is easy to overlook difficulties or gloss over significant
problems with plausible but specious explanations by working with toy
examples, we will examine existing methodologies and protocols. It 1is
not meant to be either a protocol or methodology development effort but
an evaluation. The intent is to analyze what currently exists and to
make an effort to determine what changes and ir~roverents tust be mace
in each area to have an effective meldine of the two technologies. This
also attempts to approach the problem realistically from another point
of view. Actual problems rarely allow the freedom to start froco
scratch. Normal practice involves making things work together in the
existing enviroament due to cost, scheduling and/or existing capital
investment. The difference between designing and verifying a systemn

with complete freedom versus with external constraints is very great.

Ve will investigate techniques that have teen developed to
specify and verify the properties of concurrent progranms. We
will discuss current needs in the area of protocol specification and
verification starting with what relationships exist between techniques
for verifying communication protocols and those necessary to verify
other large software projects such as operating systems. (Since
verification is the process of demonstrating a system consistent with
its specification henceforth we will assume that verification implies

specification to avoid constantly using the phrase 'specify and
y P

verify".)

Although the verification ot larpe software systers is not

currently feasible, 1interest 1in verifying such systems continues to
grow. There are three types of software whose verification is
recognized to be of ma jor importance: operating systems,
communication protocols, and data base management systems. In a systen
built along clear levels of abstraction these three are responsible for
three types of global information management. The communication
sof tware 1is responsible for information transfer, the operating syster
is responsible for resource management and the data base software
is responsible for information management. The reason for the
importance of these particular types of software is that they
provide global interactions among users and programs. Their incorrect
operation can affect many users whereas the incorrect operation of
an application program is normally localized. There is still
interest in verifying such application programs, in fact more
verification has been done on them because they tend to be
smaller and easier to specify. In this thesis, however, we are
interested in 1looking at how this technology can be applied to
communication systems and where improvements need to te made to make it
practical, not just for simple examples, but for something as cormplex as

a communication system.

2. SPECIFICATION AMD VERIFICATION

From a verification perspective a systewm has the structure shown in
figure 1. Between each of the boxes there 1is a verification

step to show that the next level properly maps the higher level into the

-4 -

next lower level. The first correspondence step verifies that the
software specifications correspond to the given formal rmodel of the
renuirements. In the second correspondence step the executable prosrar
is verified to correctly implement the specifications. TIf these steps
are successfully carried out, the software can be said to correctly

implement the modeled svstem.

; Requirements

i (M'odel)

e e ———— +
i
|

4 o ————— o - e e -+

e —— Fo o o i
Fiee 1
The box renresenting tihe specifications may be (and tor larse

systems must be) further decomposed into levels. The requirements for &
particular level will be derived from the specifications of the level
above ijt; its implementation will be in terms of the interface provided
by the level below it. The interface at a given level vprovides a
set of functions different from the functions provided at the
base hardware. These functions characterize the behavior in terrs
of the concepts of the level being defined. Such an interface is called
an abstract machine and the interface represents a level of

-5 =

abstraction (i. e. a view of the system in terrms of a set of functions

which are easier to grasp than th: detailed irmplementation).

Formal specifications are often viewed as serving two purposes.
First, as providing a complete and rigorous description of the
system being designed and second, as providing a basis for
mathematically proving that the software 1irmplementation meets the
design. For the 1latter wuse the precise mathematical formaliscm 1is
admirably suited; for the former the necessary formal. can

obscure the intended functionality and purpose.

Axiomatic specifications can lead to good concise rodels.
Axiomatic approaches are norrmally used in mathematical systerms because
they allow a theory to be developed logically, step-by=-step from a set

of assumptions which form the basis for the theory.

Axioms tend to define a function in terms of its overall
properties; sometimes such definitions are not intuitive. As an example
consider the following three axioms:

n>C => f(n,n)=n
f(n,m)=f(m,n)
f(n,m)=f (n+m,m))

These axioms are necessary and sufficient to define the Greatest
Common Divisor (GCD) function. They are well known in the realrm of
program verification; however, someone not familiar with these axiors

may spend a significant amount of time trying to determine the function

(if any) which they define.

An abstract machine gives a function defined {n terms of its

inputs and outputs. An ahstract machine can be wused in a
specification as an intermediate step between axioms and code. The
following abstract machine definition of the GCD function gives a
clearer idea of the function to be implemented without actually
giving an implerentation of the function.

f (INTEGER 1, j) -> INTEGER k;

. k = MAX({x | (1 MOD x = Q) AND (j MOD x = 0)});

An operational specification 1is essentially a definition by
example. It 1is very constraining on the implementor as it gives no
information as to whether or not a equivalent algorithm for the sare
function is acceptable. The following 1s an operation specification for
the GCD function; however, many other algorithms implement the sane
function.
£, 3)(
while 1 > 0 do

if § >= 1 then j = j=-i else swap(i, 3);
result = j;)}

The techniques discussed in the preceeding paragraghs range fror
the very abstract to the very concrete. They are not orthogonal but
hierarchical. When a subject is not well understood the only possible
specification may be an operational one. As the area evolves and

. progresses, it 1s possible to migrate towards rore abstract
specifications until necessary and sufficient conditions for the subject

area have been established.

The difference between these types of specifications 1is mostly ore
of philosophy. The specification techniques, though intended for a

-7 -

P O e, - S e e

C- ot

gpecific approach, are usually general enough to allow all three forms

of specifications to be written using 1its language. Often, though, the
verification technique and tools are such that attempting to verify a
program using other than the intended approach becomes very tedious, if

possible at all.

a. Choosing a Methodology

Our goal is to examine the use of formal methods in developing
protocols. The first step towards this goal is to choose the

overall methodology we will use for design, implementation and

verification. Some work has been done in an area generally called
protocol verification. A few survey papers have been written describing
the techniques which are availatle ([Sun78, TAL79]. The techniques
described range from those intended to examine very protocol specific

features to those intended for developing general-purpose sof tware.

As the overall methodology will guide the whole process it should
be chosen with care wusing well thought out criteria. The following

criteria seem essential for the goals we wish to accomplish. First,

comrmunication protocols are normally developed in layers. A
methodology which provides a good layering structure would be
beneficial to the effort. Second, the methodology should be applicable ﬂ

to types of software other than protocols. Protocols are not developed
in isolation; it should be possible to integrate protocol specifications
into other formal specification efforts, especially in the

areas of operating systems and data base management systers.

-8 -

Form—m e e ————————— - - —— -—

|Protocol Layer] Functions |

+ + ===t

|6. Application ! Funds transfer, Information |

I | retrieval, Flectronic mail, ... |

15 Utilicey | Tile Transfer, Virtual terminal |

1 | support, ... |

m————— +— +

l4. End/End Subscriber | Interprocess communication (e. g.|

| | Virtual circuit, Datagram, Real |

| | time, Broadcast, s..) |

+ +— ~——t

]3. Network Access | Network access services (e. g.]

| | Virctual circuit, Datagram, ...) |

|2. Intranet End/End | Flow control, Sequencing]

l | [

|l. Intranet Node/Node | Congestion control, routing |

| ! [

+- + ——

10. Link Control ! Error handling, Link flow control|

! | |

- + +

Fig. 2

Figure 2 [CK78) is an example of protocol layering. In {[CK78] the
authors analyze current network architectures and describe the ways
in which a selectiorn of current networks fit into this framevork.
This type of analysis 1is the major reason we believe any atterpt to
verify protocols should clearly take this structure into account. In
some sense this should not prove to be a problem as the layering of
protocols 1is 1in respomse to current software design philosophies
which advocate decomposing programs into manageable units. Although
each layer 1is still a very complex unit, the decomposition shown

in figure 2 is a reasonable initial decomposition. In particular, each

layer can be viewed as an abstract machine on which the layer above it

executes. These layecs can in turn be further decomposed into a set of

-9 -

simpler abstract machines.

Designing software as a hierarchy of abstract machines is a well~
known technique 1in the realm of operating systems. This technique for
designing operating systems was pioneered by Dijkstra in the THE
operating system [Dij68) and has been used in many projects since. For
the same reasons that this approach is advocated as good practice for
the design of understandable, reliable software, abstract machine
architectures are used in some verification approaches. The abstract
machine approach advocates decomposing a large nonolithic software
prograr into a set of programs each of which is less complex and rore
understandable than the original. In decomposing the design into many
small, understandable pieces, it also decomposes the theorems which are

generated into many small, easier to verify theorers.

Over the last several years significant effort has been put into
designing and implementing trusted (secure) operating systems. With the
current state of computer networking, such operating systems will need
to have the ability to manage network resources. One of the major
techniques being used, in atterpts to develop trusted operating system,
is formal specification. Such operating systems will require network
software which is formally specified. After integrating the network
sof tware the system should retain the 1level of trust (security) it
previously had. This would require the ability to 1integrate the

protocol and operating system formal specifications.

- 10 -

b. Specification and verification methodologies

We will consider four methodologies in this section. The <criteria
for selecting these four for discussion were that they are in the public
domain, that reasonable documentation of each methodology exists and
that the tools associated with each methodology have been developed to
the point that they are useable by someone not intimately involved with
the development effort. The methodologies we will consider are the
Gypsy methodology of the University of Texas at Austin, the Hierarchical
Development Methodology of SRI International, the Affirm systerm froo
USC~1SI, and the Stanford University Pascal verifier. A survey which
includes a description of these methodologies 1s available ([CGHM80]. As
part of this survey all of the methodologies were used to specify some

very simple top level properties of a security kernel.

1. Cypsy methodology

The Gypsy methodology has been under development at the University
of Texas by the Certifiable Minicomputer Project (CMP) since 1974. The
specifications are based on the axiomatic approach. Development

proceeds from a top-level specification through successive refinerents.

The Cypsy language is for both specification and implementation.
It 1s well suited for protocols in two ways. Its model of interprocess
comnunication is based on message buffers and particular attention has

been paid to concurrency.

- 11 -

- m—— - - . a7 e

L - - B W, W B
.

The Cypsy Verification Enviromment (CVE) 1is a well integrated

system to aid the user in the design and verification process. 1t has
an excellent user interface. The major weakness of the GVE 1s the
theorem prover. As part of the proof process the system generates rany
fairly trivial theorems. Driving these proofs thkrough the syster is
rather time consuming and tedious. Theorem proving problems exist to

one degree or another in all the systems.

Developing a system using Cypsy can proceed in many ways, but the
advocated way is a top-down, stepwise refinement approach. GVE provides
an incremental development and verification capability which allows some
one using the recommended procedure to write the top level, write the
interfaces to the next lower level, and then prove the correctness of
the top level. This procedure can be applied recursively at each level

to assure the correctness of the system at each step of the development.

Gypsy has been used to model a small subset of the ARPAnet (Wel76]
and work is being started under CMP to investigate the use of Cypsy for
protocol verification [Div80]. Gypsy has also been used to develop a
small process for examining and approving for downgrading portions of
classified documents which reside on computer systems. Texas
Instruments has used Gypsy as part of an exploratory effort for NASA to

develop very reliable software for an air traffic control system.

2. Hierarchical Development Methodology (HDM)

HDM is a methodology developed at SRI International for the

design of large hardware/software systems [Rob79, LRS79]. The

-12 -

methodology begins with a top-level description of the systern’s
requirements. The system 1s decomposed into modules and the
modules are organized hierarchically. Each module 1is specified as an
abstract machine after which each abstract machine 1is implermented
in terms of the data objects and the functions provided by the

level beneath it.

Although HDM includes both specification and verification, the
specification phases have been much further developed and tested than
the verification phases. Module specifications are written in a
nonprocedural language, Special (SPECIfication and Assertion Language).
Starting with a nonprocedural specification helps to decompose the
verification process; properties which are independent of implementation
can be proven before implementation decisions are introduced which

increase the complexity.

SRI has been active in the area of verification but wup till now
effort has mgstly concentrated on isolated areas. An effort is
currently underway at SRI to provide an integrated specification,
implerentation and verification environment; a necessary effort if HL!!
is to be used on a system from system conception through 1life-cvcle

caintenance

HDM has a history of use, most of it in the area of svstems
requiring security. Much of its original development occurred during an
SRI project to design a Provably Secure Operating System (PSOS) [Neu77).
It has also been used in a good number of the security kernel systers
which have been developed over the past few vyears. O0f the projects

-13 -

. W, e W

et g C e e e rmme e e T

using HDM the effort to build a Kernelized Secure Operating System

(KS0S) 1is the farthest into development. As part of the KSUS project a
formal description of the security kermel was written for both the
kernel interface and the levels into which the kernel is decorposed
[FAC79). Since an emulator for the UNIX operating system was to be
provided to run in the kernel, a formal specification of the interface

of the UNIX operating system was also written [BD78].
3. Affirm

Affirm is an interactive verification system under development at
the University of Southern Califirnia’s Information Sciences Institute
(ISI). It has grown out of two earlier verification projects, the XIVUS
Pascal verifier and the Data Type Verification System. It can be used
to prove properties about programs using abstract data types and verify

implementations which provide said properties [Tho79].

Like the Gypsy system, Affirm relies on the general notion of
refinement as its development methodology. It too is amenable to being

used to specify a hierarchy of abstract machines.

Specifications for the Affirm system are written 1in an algebraic
form based on predicate calculus; programs are implemented in a variant

of Pascal.

AFFIRM has been used on a varying collection of problers. The
DELTA experiment ([GW79] 1involved specifying and verifying part of a
message processing system. It was used to verify parts of the UCLA

security kernel (Kem79), but it was not possible to verify the corplete

- 14 =

kernel (2). There has also been some work in wusinp AFFIR*' to state

properties about protocols [Suni0].
4. Stanford Pascal Verifier

The Stanford Fascal Verifier (SPV) is an interactive system for
analyzing a program for consistency with its specification [Luc79]. It
is primarily a system for program verification. It contains no support
for abstract data type verification or hierarchical specification

development.

Specifications for the SPV system are written in an algebraic forr
based on predicate calculus; programs are implemented in a variant of
Pascal called Pascal Plus. The SPV is somewhat similar to the AFFIRM
system - it is stronger in the area of program verification and weaker

in its support of higher level constructs.

The SPV has mostly been used on small examples and has been used by
classes at Stanford University on program verification. The most
significant program, in terms of size, verified by SPV has been =2

compiler for a Pascal-like language [Pol80].
c. Hierarchical Development lethodology

Under the <criteria set forth for choosing a methodology the
Hierarchical Development Methodology seemed to be the most reasonable

choice as a framework for developing protocols. It is a

(2) The author has used all of the systems under c¢onsideration;
it 1is doubtful any of them could have verified the complete
kernel.

- 15 =

development methodology which encompasses design,

specification, implementation, and verification of larpge software
systems and a methodology specifically aimed at programs which are
amenable to being conceptually viewed as a hierarchy of abstract

machines.

The methodology decomposes the system design into stages anc
involves design, implementation and verification. The
implementation stages not only enforce good design and coding practices
but also are necessary to meet the verification goals. The
verification stages prove that the desigu meets the specifications as
it evolves and that the implementation programs correctly
implement the system as specified. The design stages and their

corresponding verification stages are shown in figure 3 [Rob79].

Design Verification
80: Conceptualization of system v0: develop global assertions
requirements

sl: Selection of user interface
and target machine

s2: decompose system into
hierarchical levels

83: represent the functions of v3: prove the rodules satisfy
each level as modules global assertions

s4: map state information between vé4: show the mappings are
levels consistent

85: implement the functions of v5: prove the abstract
level n in terms of the implementation consistent
functions at level n-l with module specifications

s6: Conversion of the abstract v6: Prove the executable code
implementations to executable consistent with the abstract
code implementations

Fig. 3

- 16 ~

HDM {s a mix between an axiomatic and an abstract machine approach.

The first stage calls for the development of global assertions (axioms),
then at a later stage abstract machines are developed which, as a
minimum, are consistent with these assertions. In development efforts
where HD!{ has been used this two tiered approach has been used to allow
well understood characteristics of the system to be axiomatized (e.g.
the security model for the KSOS security kernel) and the less understood
characteristics to be given by the abstract machine specification (e.g.
describing the interface of the KSOS kernel). We will continue this

practice in the specifications below.

Perhaps the greatest concern about the use of HD! arose not in the
area of the methodology itself, but with the specification language,
Special, associated with it. Special is known to have some deficiencies
in the area of concurrent processes. As communication protocols will
require a specification language which has a good grasp of concurrency,

this could prove to be a serious problem.

The possibility existed of using another specification language in
place of Special. Perhaps the best choice in this area would have been
from the work of the Certifiable Minicomputer Project (CMP) at the
University of Texas at Austin. C!IP has developed a methodology for
specifying, implementing and verifying communications processing
software with particular emphasis on the problems of concurrency
{Goo77]. This system is not based on using a hierarchy of
abstract machines, but, according to its designers, can be used in

conjunction with a methodology using a hierarchy of atstract machines.

-17 -

The specification language for the system, GYPSY [Goo78), would be well
suited for the task of protocol specification as its rodel of concurrent
processes involves communication through message buffers. The rajor
problem that occurs is that, although tools exist to support the user
for either system, these tools are not compatible. Since this 1is
intended as an exercise in specification rather than tool building it
was decided to stick with the language of HDM since, after examining the
exact problems, it seemed that Special would be adequate for the
specifications considered to be needed for this thesis. This assessnent
was not entirely accurate, as will be described within the

specifications and conclusions.

An interesting exercise to pursue in the future would be to specify
the Internet Protocol (the example used below) in GYPSY and compare the
utility of the two approaches. Some comparison studies using simple

protocols have been made by Sunshine [Sun79].

One definite variance from HDM will be necessary for specifications
in the area of protocols. As protocols, by their very nature, are
intended for multiple systems, it will not be possible to define the
target machine except 1in the special case of a network using the same
target machine throughout. Instead each 1implementation will have to
build up from 1ts target machine the necessary functions to implement

the protocol. Therefore, one goal of a protocol specification will be

machine independence.

d. SPECIAL

The specification lanpuage in which the modules are written {is
called Special (SPECIfication and Assertion Language). It is a
nonprocedural specification language which formalizes a technique set
forth by Parnas (Par72]. Detailed information about Special can be
found in the language reference manual (RR77], a handbook on the use of
the languages of HDM [SLR 79), and the formal mathematical description
of the language [Bil 78}. Of these the handbook gives the best insight
into why the specifications take the form they do. The paragraphs below
describe the major features of Special used in this thesis. Uncommon
features will be described wichin the actual specifications as comments
when used. Special keywords are set in capital letters in the

description.

A module consists of six sections termed paragraphs: TYPES,
PARAMETERS DEFINITIONS, EXTERNALREFS, ASSERTIONS, and FUNCTIONS. Any

empty paragraph is omitted.

Special is a strongly typed language and there are four basic
(built~-in) types: INTEGER, BOOLEAMN, CHAR(acter), and DESIGNATOP. The
designator type is used to pive objects unique names. An implementation
must require that no two objects with identical designators exist
sirultaneously. Any objects which do not consist of these predefined
types must be built from the basic types in the TYPES paragraph of the
module. The wmajor composing operators are VECTCRTOF, SETTOF, and
STRUCT"OF. Additionally new types which are simply one of the basic

types may be cdeclared to signify that two objects which are of one of

- 19 -

the basic types are not interchangeable.

The PARAMETERS paragraph is used to declare objects which remain
fixed over any gilven 1instantiation of the module. This allows
implementation dependent information to be represented in the

specification without being overly restrictive.

The DEFINITIONS paragraph essentially provides global macro
expansions for the module. In the specification herein it is used to
give names to error (EXCEPTION) conditions which arise within the rodule

and names to some non-primitive constants of the module.

The EXTERNALREFS paragraph allows a module to import functions,

types, and exception conditions from another module.

The ASSERTIONS paragraph gives global properties maintained by the
module. They are invariants which are to be proven as part of the

verification.

The FUNCTIONS paragraph defines the state of the machine and the
available operations on the machine. There are two basic function types
in Special. A V-function (VFUY¥) 1is a function which contains and
returns information about the state of the abstract machine. An O-
function (OFUN) changes the state of the abstract machine. Additionally
there 1is an OV-function (OVFUN) for operations which would te critical
sections in the actual code; it both maintains and changes state
information. Functions may have an EXCEPTIONS section which consists of
a set of boolean expressions. If any exception evaluates to true the
exception is returned; no other action occurs.

- 20 -

- - W, e w

e h‘z _

A VFUM! may be efther HIDDFE or vistble. Visible VFUNs specifv the
state of the abstract machine which can be observed frorm a higher levcl
abstract machine. HIDDEN VFUNs contain information used by the abstract

machine to implement 1ts functionality, but are not part of the

interface (i. e. information hiding). HIDDEN VFUlis, since they are for

internal wuse only, have no EXCEPTIONS; the functions which call the
HIDDEN function must be verified to do all the necessary exception

checking.

A VFUX may also be either primitive or derived. The state of oan
abstract machine is represented by its primitive VFUNs. Only primitive
VFUls may be cited in the EFFECTS of an OFUN. Derived VFUNs exist to
present the state of the machine in a way wore useful to the next higter

level.

OFLUls are used to define the orerations or. the data structures of
the rodule. Like visible VFUNs, they have EXCEPTIONS and the
interpretation is identical. The result of calling the OFUII is stated
in the EFFECTS section. All EFFECTS are nmathematical statements;
assignment 1is never implied. It defines a new, but not necessarily
unique, state for the abstract rachine in terms of the current state.
Nondeterminism in the specification is encouraged btoth to point out
areas where the requirements may need to be nade rore restrictive and to
give the implementor as much freedom as possible so that the nost

efficient irplementation which meets the requirements is allowed.

A few notational remarks:

a)

b)

c)

d)

e)

£)

g)

A new value of a VFUL (assigned by an OFUN) 1is
signified by preceding the name by a single quote (”).
A VFUN designated as HIDDEN 1is only available
to the module in which it is defined; it may not
be accessed by other modules.
Question mark symbol (?) is a distinguished value
signifying UMDEFINED. A statement of the form
"<var> = ?;'" in the INITIALLY section of a VFUU
implies that for any set of arguments to the VFUl for
which no value has been defined by some call to an OFUN,
the value of the VFUN is the distinguished value,
UNDEF INED.
The statement RESCGURCETERROR in an exception section
implies that an error occurred in a lower level module
implementing the function. It allows lower level resource
allocation decisions to be concealed.
The NEW operator applies to an object of type DESIGIATOR.
It returns a unique DESIGNATOR each time it is called and
therefore can be used to distinguish objects.
The construct

VECTOR™OF a | LENGTH(a) = b
is read as defining a vector of objects of type a, the
vector being b long where b rust be of type INTEGER.

The construct ~= symbolizes not equal.

- 22 -

3. A HILRARCHY OF PROTOCOLS

Communication protocols, as stated above, are developed in layers.
These layers are each meant to present an abstract machine interface for
higher level protocols, both known and to be developed in the future.
This differs somewhat from the development of operating systems in which

a single visible interface 1s presented.

Figure 2 above presented protocol layering in the abstract; figure
4 presents a part of an existing protocol hierarchy. (The levels beside
the fipure refer to figure 2.) This is a small selection from the
hierarchy which exists and 1s planned for the ARPA internetworking
experiment. Of particular note is that not only is a lower level.
protocol expected to support multiple higher level protocols, but also
that higher levels may be expected to be implemented on different lower

level protocols.

At the highest level of specification, each protocol can be viewed
as providing a user interface for a specific type of service and mapping
the input parameters into a call to the next lower level which will

achieve the desired result.

Sprecifying the user interface will not lead to a single view of the
systen but a view at each layer because each protocol is meant to be a
"user interface" to the next higher level and to allow for additional

protocols to be implemented «t that level.

-23 -

| ARPAnet | Level 6
| Mail |
ot

+ J
| |
| R SR S
e e et | File |
| Telnet | | Transfer | Level 5
tmmee et | Protocol |
| tm———t—————t
| |
+ |
I
e — +— + — - -
Network | | Transrission |] User !
| Voice } ! Control | | Datagram | Level &
| Protocol | | Protocol | | Protocol |
| ! |
| | |
+ + +
|
e e
| Internet |
| Datagram | Level 3
| Protocol |
FEr——
]
+ - -—
[| |
! | J
e] e A—
| ARPAnet | U SE—— | Packet |} Level 2
| NCP | | SATNET | | Radio |
P O—— + . e et

Fig. 4

In figure 4 each protocol is expected to run using the functions
and data objects provided by the protocol layer beneath it. In this
model a layer can be viewed as an abstract rachine. Often the lavering
is violated; sometimes rminimally, sometimes seriously. No matter hou

minimal the violation this "reaching into" another layer violates the

- 24 =

abstract machine concept arnd intertwines the protocols. This

intermixing 1leads to the problerms mentioned in the introduction --

lateness, complexity, etc.

A protocol has two different kinds of specification -- an interface
specification and an internal specification (figure 5). The interface
specification presents the abstract machine interface provided bv the
protocol. The intermnal specification gives the details of the abstract
machine”s internal structure. The internal specification presents the
~ecessary information to build the interface specification from the
functions provided by the abstract machine on which the protocol under

consideration is to run.

Interface Interface
| |
! |
S SR S Internal B S
| Protocol |< >| Protocol |
R T - + S S ——
Fig. 5

The distinction drawn above, though artificial in the sense that
all of the layers are composed of abstract machines, tends to erphasize

the orthogonal purposes which the specifications serve.

Communication protocols are often believed to present sore
verification problems which are significantly different from those
found 1in operating systems and data base systems., Fecause

communication protocols require cooperating processes across rather

- 25 -

2 -~ - . e - e et v————-

error~prone transmission media, one nust worry about corruption and loss

of data. The difference, from the viewpoint of specification and
verification, is mostly one of degreec. Operating systems and data base
systems are subject to losses due to hardware failure and the inputs
received from an wunspecified user process are probably more random
than from most transmission media. Probably the most important
difference is that since the characteristics of a communication
medium are predictable (in a probabilisti¢ sense) more can be said about

various performance considerations of protocols.

The specification and verification problems mentioned above are
serious 1issues and research is needed into verification techniques for
such problems. This is not meant to imply a need for a separate area
called ‘''protocol verification"” because these problems need to be solved
for operating systems and data base systems. The need 1is to extend

current techniques in the area of program verification.

There is still though, one obvious difference which rakes
communication protocol software unique and this difference cannot be
overlooked -~ by its very nature communication protocol software is
distributed among at least two physically separated entities. The
effect this has on the specification process will be a topic of

discussion later.

a. Choosing a protocol

The discussion above gives a framework for specifying protocols.

It requires only that a protocol be pictured as an abstract machine.

- 26 =

PRI WSS 5
.
4

These abstract machines are arranped hierz-chically providing a more
concrete view as the level of refinement increases. The next step is to

pick a point in the hierarchy to begin the specification task.

Of the possible points to begin the specification process in the
hierarchy outlined above the internet layer seems to be a logical
candidate. Although this may seem to be a middle out approach, this
layer seems to be the fundamental layer to which protocols above it and
below it must interface. The networking model we have given does not
state how many distinct protocols may exist at each layer. At most
layers many different protocols already exist. At the internet layer,
however, the choice is a single protocol, adding a further layer (i.e.

an inter-internet layer) or a collection of ad hoc connections.

Currently there are three major protocols being proposed for
network interconnection. The Defense Advanced Research Projects Agency
(DARPA) Internet Protocol (IP) [Pos80a), the PUP arcanitecture of Xerox
Palo Alto Research Center (PARC) [Bog80), and the Consultative Committee
on International Telephone and Telegraphy (CCITT) X.75 recommendation
(X.75]. Both IP and PUP are datagram oriented; X.75 is virtual circuit

oriented.

Although all three of these protocols are 1intended for network
interconnection, they dJo not approach the problem at the same network
layer. The IP and PUP proposals provide only end=-to~end addressing;
higher level protocols are responsible for reliability. The X.75
recommendation is intended to provide reliable end to end delivery. In
this sense PUP and IP are at level 3 in the protocol hierarchy (see

-27 -

figure 4) whereas X.75 is at level 4. Being at a higher level X.75 is
also the least general -- it is designed to connect only networks which

use the CCITT X.25 protocol as theilr network access protocol.

The differences between IP and PUP are mostly matters of

philosophy. Of the two PUP tends to be simpler, mostly because it does

not handle fragmentation - the splitting of datagrams which are too
large to fit into another network. PUP does not ignore this probler,
it just considers it to be a problem to be handled by the gateways into
and out of each network. IP opted for simpler gateways with a more
complex 1internetworking protocol. Another difference 1is 1IP does
addressing on a host to host basis whereas PUP does addressing on a

process to process basis.

Although PUP and IP may differ in some minor matters of philosophy
the designers of both agree on one major point - there needs to be a

single internet layer.

We have chosen to study the IP in this thesis for two reasons. It
has been established as a standard for the Department of Defense.
Also, an agreement between the ARPAnet and PUP communities [Coh79]
states that when a conflict arises between IP and PUP as an internetwork
protacol PUP will be encapsulated in IP; therefore, we decided to use IP

as an example in this thesis.

- 28 -

b. Distributing modules arong network entities

HDM has as one of its goals to be a methodology applicable to
designing software systems which in some sense constitute a family of
processes. SRI has investigated this to a degree in an effort to define
a family of operating system for the Army but this effort was
discontinued [Meu76). This work forms a basis for wusing HDM with a
system which 1s a family of processes such as the protocol model given
in figure 4. The effect of distributing the modules of a family arong

the loosely coupled systems of a network needs to be investigated.

The earily stages of HDM (0-2) purposefully attempt: to place
minimal restrictions on implementation decisions; the only requirement
is that the implementation meet the specification. Modules may be
implemented as hardware, software, firmware or a combination thereof;
they may run on the same processor or be distributed among wmany
processors. SRI has an effort underway which involves distributed
processing. The SIFT (Software Implemented Fault Tolerance [(VWen76])
system 1s a collection of distributed processors which use software
redundancy among PpProcessors to compensate for hardware failures.
Although this effort will face some.of the problems which a distributed

network raises, it is not as severe a test as a system such as the

T SR

ARPAnet because the whole effort is being done at one location by a
single, closely coordinated team. In networks there 1is a need to
comrunicate implementation decision which must be made in common by all

processors to allow effective communication.

-29 -

* -, e Bt e VP B YA e —r —v————— - v—— = i

The major problem which independent {implementations seems to
cause is that the specification must include some information which
is normally not needed because the compiler hides such details. A
compiler will use internal representations for objects which are
consistent across module boundaries. If modules are compiled using
different compilers (a very 1likely circumstance in a heterogeneous
network), either the compilers must use a common representation when
objects from one module need to be interpreted by another or they must
have the ability to distinguish and transform from one representation

to another.

4. THE INTERNET PROTOCOL

One item any formal specification needs 1is a commentary
explaining the overall ©purpose of each major subsystem and the
philosophy behind 1its specifications. The commentary should reveal
to the reader the decisions behind the mathematical description.
The goal is not to bias the reader but to guide him, explaining to hin
the purpose behind each function in the specification. Recall the
GCD function given above. Without being told what function was being
represented some one unfamiliar with this set of axioms may have to try
many possible functions before concluding that the axioms define the GCD
function. Even though a commentary will only give an informal notion
of the system being specified, this can greatly enhance the speed of
comprehension. There is a danger with providing such a commentary. It
is much easier to decide (mistakenly) that a function performs a

specific function after being told the intended function than to

- 30 -

recreate the original mistake. It is the reader’s job to confirm that
the specification corresponds to both his understanding of the

purpose of the system under development and the informal description.

In the specifications which follow, specific descriptive inforrmation
about each unit within the specification will be given as comments

within that unit.

A good description of the IP already exists {Pos80al. Excerpts
relevant to understanding the formal specifications (3) are included

below.

\ There are three parts of the description in whick we are
interested: the purpose, the interface description and the internal
description. The purpose 1s essentially the conceptualization of the
system requirements, stage sO0 of HDM. The purpose provides the btasis
for the global assertions of the system, stage vO. This stage requires
that the informal English statement of the purpose be restated in formal
mathematics terms. The sl stage of HDM requires choosing two interfaces
- the iInterface the IP will present to users and the interface of the
abstract machine on which the IP will run. The protocol touches on both
of these matter but it concentrates mostly on the internal description
of the protocol. The internal description is fairly complete, although
the actions to be taken in the event of some unexpected situations are

often undefined.

(3) Henceforth the term protocol description will be wused to
refer to {Pos80a). The term protocol specification will not be
so used.

- 131 -

a. Purpose

The Internet Protocol is designed for use in interconnected systers
of packet-switched computer communication networks. The internet
protocol provides for transmitting blocks of data called dataprams
from sources to destinations, where sources and destinations ar.
hosts identified by fixed lenath addresses. The internet protoccl
also provides for fragmentation and reassembly of long datagrams, if
necessary, for transmission through '"small packet" networks.

The internet protocol is specifically limited in scope to provide
the functions necessary to deliver a package of bits (an internet
datagram) from a source to a destination over an interconnected
system of networks. There are no mechanisms to promote data
reliability, flow control, sequencing, or other services comrmonly
found in host~to-host protocols.

The above description gives the major purpose the IP is intended to
fulfill. Although nowhere explicitly stated in the IP description,
there are a number of other services which the IP 1is expected to
provide. These are provided by the 1IP as what are termed internet

options.

Though an informal staterent of the requirerents 1is rather easy,
mathematical formalization is much harder. The state of forrmal
specification is not at a point where all requirements can be stated

mathematically in such a manpner so as to be proven.

Ve can state some properties about the IP which should be provable.
These properties are rather weak as the service provided by the IP has
very little sophistication. The IP does not specifically concern itself
with anything but the correctness of the internet header. It provides
a checksum for the header but none for the data. Any strong correctness
criteria will only be able to deal with the contents of the

internet header.

- 32 -

Despite the fact that the IP makes no claims about the correctness

of the data it delivers, the IP rust have some concern for it. Although
the description never explicitly states it, any implementation of the IP
which always delivered corrupted datagrams would have to be considerec
incorrect. Informally it can be assumed that an irplementor knows this
but a formal specification would need to include a statement to the
effect that no deterministic step will ever cause a datagram to bte
delivered in error, or that if sent often enough a datagram will get
through with the data intact or recoverable (i. e. successful forward

error correction).

b. Interface description

Because of the generality of the higher level protocols which the
IP {s meant to service, it essentially presents a set of user
interfaces. These 1interfaces are meant to accommodate users whose
requirements range from needing nothing but an unordered stream of
datagrams to those wanting to implement highly structured data streamns.
The protocel description gives two sample calls as an example interface
[Pos80a].
ﬁhe following two calls satisfy the requirements for the user
to internet protocol module communication ("=>" means returns):
3END (dest, TOS, TTL, BufPTR, len, Id, DF, options => result)
where:
dest = destination address
TOS = type of service
TTL = tine to live
BufPTR = buffer pointer
len = length of buffer

Id = Identifier

- 33 -

DF = Don’t Fragment
options = option data
result = response
OK = datagram sent ok
Error = error in arguments or local network error

RECV (BufPTR => result, source, dest, prot, TOS, len)
where:
BufPTR = buffer pointer
result = response
OK = datagram received ok
Error = error 1n arguments
source = source address
dest = destination address
prot = protocol
TOS = ctype of service
len = length of buffer
In the course of specifying the protocol two errors were found in
the s3ample RECV call. One problem is that the call should contain a
return parameter for the IP options. However, not all option types
should be visible at the interface. The NO OP and end of options option
are implementation details and the Ceneral Error Report is an exceptions
reporting mechanism. (The types of options are described in detail

below.)} The second problem is that the protocol should be a parareter

to the call, not a result. With these emendations the call would te:

RECV (BufPTP, prot => result, source, dest, TOS, opt, len)

c. Internal description

The internal description essentially defines an abstract data type
called an internet datagram or packet. Having this well defined format
solves many of the problems referred to in the section discussing what

the consequences are of spreading IP implementation armong heterogpeneous

- 34 -

computers on a network.

The format of the IP header is riven in fipure 6. It, and the
description following, are drawn from [PostOa}; the footnotes are not

from the cquoted source.

C 1 2 3
Cl123456789012345678901234567¢9¢CI1
B s S
{Version{ IHL |[Type of Service] Total Length]

. e T e s S o s e s o S e s e
| Identification |Flags | Fragment Offset]
e s w v S N TE ST S S S S S S S R e
| Time to Live | Protocol] Header Checksum |
B T A s e e S S e e a4
I Source Address |
B e e T o s S TR S
| Destination Address |
B o T T s s B A e B I B S s e e 8
[Options | Padding |
e T o L e A e S A e A aas

Fig. 6
Each tick mark represents one bit position.
Version: 4 bits

The Version field indicates the format of the internet header.
This document describes version 4.

IHL: 4 bits

Internet Header Length is the length of the internet header in 32
bit words, and thus points to the beginning of the data. Yote
. that the minimum value for a correct header is 5.

Type of Service: 8 bits

The Type of Service provides an indication of the abstract
paranmeters of the quality of service desired. These parameters
are to be used to guide the selection of the actual service
parameters when transmitting a datagram through a particular
network.

Bits 0-2: Precedence.
Bit 3: Stream or Datagram.
Bits 4-5: Reliability.

- 135 -

Bit 6: Speed over Reliability.
Bits 7: Speed.

0 1 2 3 4 5 6 7 ;
B et S s S SO GRS
| I I l | |
| PRECEDEICE | STRM|RELIABILITY) S/R |SPEED|
| I I | I I
PRECEDENCE STRM RELIABILITY S/R SPEED
111-Flash Override 1-STREAM ll-highest l-speed 1=-high
110-Flash 0-DTGRM 10-higher O0-rlblt GC-low
l11X-Imnediate Ol-lower
0l1X-Priority CO-lowest
00X~Routine

The type of service is used to specify the treatment of the
datagram during its transmission through the internet svstem.

Total Length: 16 bits
Total Length is the length of the datagram, measured in octets,
including internet header and data. This field allows the length
of a datagram to be up to 65,535 octets. All hosts rmust be
prepared to accept datagrams of up to 576 octets (whether they
arrive whole or in frapments).

Identification: 16 bits

An identifying value assipned by the sender to aid in assembling
the fragments of a datazram.

Flags: 3 bits
Various Control Flags.
Bit 0: reserved, must be zero

Bit 1: Don"t Fragment This Datagram (DF).
Bit 2: More Frapments Flag (MF).

0 1 2
S Uy SIS
| | D | M|
oL F | F|

B s S
Fragrent Offset: 13 bits
This field indicates where in the datagrar this fragment belongs.
The fragment offset 1is measured in units of & octets (64 bits).

The first fragment has offset zero.

-~ 36 -

Time to Live: & bits

This fleld indicates the maximum time the datagram is allowed to
remain in the internet system. If this field contains the value
zero, then the datagram should be destroyed. This field 1is
modified in 1internet header processing. The time is measured in
units of seconds. The intention is to cause wundeliverable
datagrams to be discarded.

Protocol: 8 bits

This field indicates the next level protocol used in the data
portion of the internet datagram.

Header Checksum: 16 btits

A checksum on the header only. Since some header fields may

change (e.g., time to live), this is recomputed and verified at

each point that the internet header is processed.

The checksum algorithm is:
The checksum field is the 16 bit one’s complement of the one’s
complement sum of all 16 bit words in the header. For purposes
of computing the checksum, the value of the checksur field 1is
Zero.

Source Address: 32 bits

The source address. The first octet is the Source Network, and
the following three octets are the Source Local Address.

Destination Address: 32 bits
The destination address. The first octet 1is the Destination
Network, and the following three octets are the Destination Local
Address.

. Options: variable

The option field is variable in length. There may be zero or nore
options. There are two cases for the format of an option:

Case l: A single octet of option=-type.

Case 2: An option~type octet, an option-length octet, and
the actual option-data octets.

The option-length octet counts the option-type octet and the
option=-length octet as well as the option-~data octets.

The option-type octet is viewed as having 3 fields:

- 37 -

Th

Th

1 bit reserved, must be zero
2 bits option class,
5 bits option number.

e option classes are:

= control

= jnternet error

= experimental debugging and measurement
= reserved for future use

[S]

e following internet options are defined:

CLASS NUMBER LENGTH DESCRIPTION

0 0 - End of Option list. This option
occupies only | octet; it has no
length octet.

0] 1 - No Operation. This option occupies
only 1 octet; it has no length octet.
0] 2 4 Security. Used to carry Security,

and user group (TCC) information
compatible with DOD requirements.

0 3 var. Source Routing. Used to route the
internet datagram based on information
supplied by the source.

0 7 var. Return Route. Used to record the
route an internet datagram takes.

0] g 4 Stream ID. Used to carry the stream
identifier.

1 1 var. Ceneral Error Report. Used to report

errors in internet datagrar processing.
Internet Tirestarp.
2 5 6 Satellite Timestamp.

[§%]
o~
fex

Specific Option Definitions
End of Option List

e
100000000 |

This option indicates the end of the option list. This
might not coincide with the end of the internet header
according to the internet header length. This 1is wused at
the end of all options, not the end of each option, and need
only be used if the end of the options would not otherwise
coincide with the end of the internet header.

- 38 -

May be copied, introduced, or deleted on fragmentation.

Mo Operation

U

|00000001 |

B
Type=l

This option may be used between options, for example, to
align the beginning of a subsequent option on a 32 bit
boundary-.

May be copied, introduced, or deleted on fragmentation.
Security

This option provides a way for DOD hosts to send security

and TCC (closed user groups) parameters through networks

whose transport leader does not contain fields for this
information. The format for this option is as follows:

f00000010(00000100{0000008S | TCC |

Type=2 Length=4
Security: 2 bits
Specifies one of 4 levels of security

ll-top secret
10-secret
Ol-confidential
QU-unclassified

Transmission Control Code: 8 bits

Provides a means to compartmentalize traffic and define
controlled communities of interest among subscribers.

Mote that this option does not require processing by the
internet module but does require that this information be
passed to higher level protocol modules. The security and
TCC information might be used to supply class level and
compartment information for transmitting datagrams into or
through AUTODIN II.

t'ust be copied on fragmentation.

Source Route

+- + + +— =l)= et
{00000011| length | source route |
+ 4+~ +— + // +

Type=2

The source route option provides a means for the source of
an internet datagram to supply routing information to te
used by the gateways in forwarding the datagram to the
destiration.

The option begins with the option type code. The second
octet is the option length which includes the option type
code and the length octet, as well as length-2 octets of
source route data.

A source route is compcsed of a series of internet
addresses. Each internet address is 32 bits or 4 octets.
The length defaults to two, which indicates the source route
is empty and the remaining routing is to be based on the
destination address field.

If the address in destination address field has bcen reached
and this option’s length is not two, the next address in the
source route replaces the address in the destination address
field, and is deleted from the source route and this
option“s length is reduced by four. (The Internet Reader
i ength Field must be changed also.)

Must be copied on fragmentation.

Return Route

+ -+ += 4= // +

[0000C111{ length | return route]

+- 4= +- S !/ -t
Type=7

The return route option provides a means to record the route
of an internet datagram.

The ontion begins with the option type code. The second
cctet 1is the option length which includes the option type
code and the length octet, as well as lenpth-2 octets of
return route data.

A return route 1is composed of a series of internet
addresses. The length defaults to two, which indicates the

return route is empty.

then an internet module routes a datagram it checks to see

- 40 -

if the return route option is present. If it is, 1t inserts
its own internet address as known in the environment into
which this datagram is being forwarded into the return route
at the front of the address string and increments the length
by four.

Not copled on fragmentation, goes in first frasment only.

Stream ldentifier

{00001000C | 00000010 Strean ID |

T T T

Type=8 Length=é4
This option provides a way for the 16=bit SATNET stream
identifier to be carried through networks that do not
support the stream concept.

Must be copied on fragmentation.

Ceneral Error Report

+ -+ + —t—— + = // +
{00100001| length |err code| id | |

+ +- + + += e[[m et
Type=33

The general error report is used to report an error detected
in processing an internet datagram to the source internet
module of that datagram. The "err code"” indicates the type
of error detected, and the "id" 1is copied fror the
identification field of the datagram in error, additional
octets of error information may be present depending on the
err coc-.

If an internet datagram containing the general error report
option 1s found to be 1in error it must be discarded, no
error report is sent.

ERR CODE:

0 -~ Undetermined Ervor, used when no information is
available about the type of error or the error does not
fit any defined class. Following the id should be as ruch
of the datagram (starting with the internet header) as
fits in the option space.

!l ~ Datagram Discarded, used when specific information is
available about the reason for discarding the datagram can
be reported. Following the 1id should be the original
(4-octets) destination address, and the (l-octet) reason.

- 4] =

s T ey RSV SSNEE WY VIS
© e

Reason Description

0 No Reason

1 No One Wants It - No higher level protocol
or application program at destination wants
this datagram.

2 Fragmentation lleeded & DF - Cannot deliver
with out fragmenting and has don’t fragment
bit set.

3 Reassembly Problem ~ Destination could not

reassemble due to missing fragments when
time to live expired.

4 Gateway Congestion - Gateway discarded
datagram due to congestion.

The error report is placed in a datagram with the following
values in the internet header fields:

Version: Same as the datagram in error.

IHL: As computed.

Type of Service: Zero.

Total Length: As computed.

Identification: A new identification is selected.

Flags: Zero.

Fragment Offset: Zero.

Time to Live: Sixty.

Protocol: Same as the datagram in error.

Header Checksum: As computed.

Source Address: Address of the error reporting
module.

Destination Address: Source address of the datagram

in error.
Options: The General Error Peport Option.
Padding: As needed.

Not copied on fragmentation, goes in first fragment only

(4).

Internet Timestamp

-+ -+ e . R u
t

{01000100]00000100 | time in milliseconds

+— 4
MR, i

Type=68 Length=6

The data of the timestamp is a 32 bit time measured in
milliseconds.

Mot copied on fragmentation, goes in first fragment only.

(4) This statement 1s correct, however, a GER cannot be
fragmented because it is only a datapram header.

- 42 -

Satellite Timestarp

+ — + + + +~ +
101000101 00000100} time in milliseconds |

Type=69 Length=6

The data of the timestamp is a 32 bit tire measured in
milliseconds.

Not copied on fragmentation, goes in first fragment only.
Padding: variable
The internet header padding is used to ensure that the
internet header ends on a 32 bit boundary. The padding is
zero (35).
d. Interface vs. internal description
Although the IP description is intended to be both an interface and
an internal description of the protocol it is more concerned with
describing the internal structure of an IP implementation than with
presenting a good interface to the IP. Consider the way the description

treats the the routing options of IP.

SEND(sa A, da B, sr <C, D, E>, rr <>)

sa - source address

da - destination address

Sr = source route

rr - return route

capital letters are internet addresses

angle brackets are used to enclose a list of addresses

The interpretation of this call would be to deliver a datapram to F

(5) Effectively end of option list bytes.

- 43 -

¥
. e e oy - o .) L
2T e T T e ., e we
R

passing throuph B, C and P on the way. Uhen it arrived at F a RICV call

would return
(sa A, da E, sr <>, rr <D, C, B>)

(This makes the assumption that the only internet routing along the way
is dome at B, C and D). To return the packet to A the next level rust

reformat these arguments as follows:
(sa E, da D, sr <C, B, A>)

In addition to being slightly confusing using this format makes the
assertions about the IP more complicated. Instead of being able to
state that if a datagram is delivered on a RECV call that a SEND call
was made with this address as the destination, it is necessary to

include a special clause to deal with the way routing options work.

The problems could be "solved" by defining the c¢all at the

interface differently. Let the call at the interface be
SEND(sa A, da E, sr <B, C, D>, rr <>)

and have the IP reformat the arpuments internally as they were in the

call above - (sa A, da B, sr <C, D, E>, rr)

At the receiving end the argument returned by RECV can be used to
return an answer simply by swapping source and destination. This
reformatting also removes the need to have a special case in the

assertion about where the datagram will be delivered.

- 44 -

The situation described above normally occurs due to the way design

is done. The requirement stated would be to the effect that the
protocol provide a way to do explicit routing and to collect routing
information on the way. No further refinement of the reauirerent is
often done until implementation decisions are made. This decision then

becomes the interface to the system.

The requirements should not overconstrain the 1irplementation.
However, after implementation decisions are rade which reflect upward,
the upper level specification should bte revised to present a clear,

consistent interface.

5. USER INTERFACE FORMAL SPECIFICATIONS

The interface described here is different from the interface which
is necessary to use the full functionality provided by IP. 1t attempts
to provide an interface which hides all of the implerentation specific
details of the 12. In many ways it is the type of interface which woulc
be very appropriate to the User Dataprarm Protocol (uDP) (Pos?79]. Host
of this 1interface specification could be directly irmported into a
specification for the UDP. It ;ould not require any changes, just the

addition of four fields of the UDP header which would map on to the data

portion of the IP.

a. Module: Inet™send

This rodule provides the user interface to the IP. It is intended
to be an interface which hides all inner workings of the implementation

- 45 =

from the user. Certain parameters defined in the protocol description
are not available at this lnterface (e. p. the identification field).
Higher level protocols which require access to such fields must have
access to the abstract machine which implements Inet“send. The \FUls of
this module are all HIDDEN as the protocol description has no functions
which return this information. If desired a derived VFUN, Status, could

be defined.

MODULE Inet~send
TYPES

Byte: {0..2"Byte"size-1};
Flag: BOOLEAN;
Data: VECTORTOF Byte;
Char™str: VECTOR"OF CHAR;
Optn: STRUCT™OF(Char~str opt~type, INTECER opt~ln;
Data opt~info);
$(At the user level options consisting of a single octet
should never be visible.)
Options: SETTOF Optn;
Pkt“1d: DESIGCNATOR;
Type~of “serv: STRUCT™OF (CHAR precedence; Flag strm;
CHAR reliability; Flag svsr, speed);
Packet: STRUCT OF(INTEGER ver; Type of “serv tos; INTEGER ttl;
Char“str pcol, sa, da; Options o; Data d);

PARAMETERS

INTEGER Version;

INTEGER Byte“size;

INTEGER Source ™ net;

SET™OF Char™str Source addrs;
Char™str Default source™addr;
INTCCER Max inet™pkt;

SETOF Char~str Legal~addr;
SET"OF Char~str Option~types;
$(This set would not contain NO OP, End of Options, or GER.)
SET"OF Char~str Protocols;
SET"OF Char~str Service™types;

- 46 -

Te ¥ P W, W W

DEFINITIONS

BOOLEAN

BOOLEAN

BOOLEAK

BOOLEAN

BOOLEAN

BOOLEAN

EXTERNALREFS

Unknown addr (Char~str addr) IS
NOT (addr INSLT LegalTaddr);

Unknown~pcol(Char~str c¢) IS NOT(c INSET Protocols);

Unknown~opt (Optn opt) IS NOT (opt.opt type INSET
Option~types);

Invalid~tos (Char™str c) IS NOT(c IMSET Service types);
Invalid“pkt(Pkt™id id) IS NOT (id INSET Current™ids());

Too~small (INTEGER t) IS t <= 0;

FROM Virt net:
OFUN Send~to net(Packet p);

FUNCTIONS

VFUN Type~of “service(Pkt~id id) =-> Type~of “serv tos;

HIDDEN;

INITIALLY tos = 7;

VFUN Time to~live(Pkt™id id) -> INTECER ttl;
$(Tirme measured in seconds. The General Error Report has a

default

time to live of sixty seconds. This type of packet

does not appear at this interface, however, so the default
of UNDEFINED will be used for all cases which occur at the
user interface.)

HIDDEN;

INITIALLY ttl = ?;

VFUN Protocol (Pkt™id id) -> Char“str pcol;

NIDDEN;

INITTIALLY pcol = ?;

VFUN Source addr(Pkt~id id) => Char~str sa;

HIDDEN;

INITIALLY sa = Default™source™addr;

VFUN Dest~addr(Pkt~id id) =-> Char~str da;

HIDDEN;

INITIALLY da = ?;

VFUM Option~field(Pkt~id id) -> Optiomns opt;

- 47 -

HIDDEN ;
INITIALLY opt = { };

VFUN Map(Pkt~id id) -> Data m;
HIDDEN;
INITIALLY m = ?;

VFUN Packets™in"prog(Pkt~id i1d) -> Packet p;
EXCEPTIOXS
Invalid™pkt(id);

DERIVATION
STRUCT (Version,
Type~of “service(id),
Time~to™live(id),
Protocol (id),
Source~addr(id),
Dest~addr(id),
Option~field(id),
Msg(id));

VFUN Current~ids() -> SETTOF Pkt~id ids;
HIDDEN ;
INITIALLY ids = { };

OVFUN Make™pkt() -> Pkt~id id;
EFFECTS
id = NEW(Pkt~id);
‘Current™ids() = Current~ids () UNION {id};

OFUN Set™tos (Type~of“serv tos; Pkt~id id);
EXCEPTIONS
Invalid~pke (id);
Invalid“tos (tos);

EFFECTS
"Type~of “service(id) = tos;

OFUM Set™ttl(INTEGER ttl; Pkt~id 1d);
EXCEPTIONS
Invalid™pkt (id);
Too small(ttl);
RESOURCE“ERROR;
$(ttl too large to fit in space allowed by
representation)

EFFECTS
‘Time~to~live(id) = ttl;

OFUN Set™protocol (Char™str pcol; Pkt~id 1id);
EXCEPTIONS
Invalid~pkt {(id);

- 48 =

lowver

level

Unknown~pcol(pcol);
EFFECTS
‘Protocol(id) = pcol;

OFUN Set~dest~addr(Char”str da; Pkt~id 1id);
EXCEPTIOMNS
Invalid “pkt (id);
Unknown " addr(da);
EFFECTS
‘Dest~addr(id) = da;

OFUN Set~options (Optn opt; Pkt~id id);
EXCEPTIONS

Invalid~pker (id);

Unknown ~opt (opt);

RESOURCETERROP.;

$(This last exception 1is wused to reflect a header N
overflow at the lower level without introducing the
header size at this level.)

EFFECTS
‘Option~field(id) = Option~field(id) UNION {opt};

OFUN Set~data(Data d; Pkt™id id);
EXCEPTIONS
RESOURCETERROR;
EFFECTS
Msg(1id) = d;

OFUN Destroy (Pkt~id id);
$(Allows a packet to be flushed from the system without
sending. 1t does not overwrite any information about the
packet, it just makes the packet inaccessable since its id
is no longer valid. As part of the implementation the
resources used by this packet could be reclaimed but the
specification does not require this.)

EXCEPTIONS
Invalid~pkt (id);
EFFECTS
‘Current™ids () = Current™ids() DIFF {id};

OFUN Dispatch(Pkt~id 1d);
EXCEPTIONS
Invalid™pkt (id);
EFFECTS
‘Current™ids () = Current™ids () DIFF {(id};
EFFECTS™OF Send~to™net(Packets™in~prog(id));

END"MODULE

- 49 =~

- o A e ——p— i = A\ ——

b. Module: Inet~recv

This module is essentially the complement of Inet send. Tt allows
an implementation to return all IP header fields at once or to get the
packet identifier and use it to request only those fields needed as
needed. This module has few exception conditions as most errors are
not observable at the user interface. Packets arriving with an error in
the header (i.e. a bad checksum) are not passed up to the user
interface. At this level it is the same as if the network discardec
that packet. Similarly, a misrouted packet never becormes available to

the user.

MODULE Inet recv
TYPES

Byte: {0..2"Byte~size-1};

Flag: BOOLTAN;

Data: VECTOR"OF Byte;

Char~str: VECTOR™OF CHAR;

Optn: STRUCT OF(Byte data, length; Data opt~info);

Options: SETOF Optn;

Pkt~id: DESIGNATOR;

Type~of “serv: STRUCTTOF(CHAR precedence; Flag strm;

CHAR reliability; Flag svsr, speed);

Packet: STRUCT™OF(INTECER ver; Type of “serv tos; INTEGER ttl;

Char~str pcol, sa, da; Options o; Data d);

PARAITETERS
INTEGER Version;
INTEGER Byte“size;
INTEGER Max“pkt;
DEFINITT. ..

BOOLEAN Invalid~pkt (Pkt~id {d) IS NOT(id INSET Current~ids());

- 50 -

EXTERNALREFS

FROM Virt“net:

OVFUN Pecv fm™net{(Char~str da, pcol; BOOLEAN blk) ~> Packet p;

FUNCTIONS

VFUN Type“of “service(Pkt~id id) =-> Type~of “serv t;
EXCEPTIONS
Invalid~pke(id);

DERIVATION In~packets(id).tos;
VFUN Time~to~live(Pkt~id id) => INTEGER t;

HIDDEN;
$(The value of this function is not available to the

user

interface; therefore, it 1is given as a hidden function.

The mnmodule 1itself may wish to use this wvalue

for

diagnostic and performance purposes but in some cases it

does not have a defined value, the times when the
was reassembled from fragments.)

INITIALLY t = ?;
VFUN Protocol(Pkt™id id) -> Char“str p;
EXCEPTIONS
Invalid~pkt(id);
DERIVATION In“packets(id).pcol;
VFUN Source™addr(Pkt~id 1d) -> Char’str s;
EXCEPTIONS
Invalid~pkt(id);
DERIVATION In~packets(id).sa;
VFUN Dest~addr(Pkt~1id id) => Char“str d;
EXCEPTIONS
Invalid~pkt (id);
DERIVATICN In“packets(id).da;
VFUN Option~field(Pkt~id id) => Options opt;
EXCEPTIONS
Invalid“pkt(id);

DERIVATION In~packets(id).o;

-~ 5] -

T R TR WL, e e ' e

packet

VFUN Msg(Pkt~id id) => Data m;
EXCEPTIONS
Invalid™pkt (1d);

DERIVATION In"packets(id).d;

VFUN Msg~length(Pkt~id id) =-> INTEGER 1i;
$(The interface description requires the IP to return the
length of the buffer it pasces pack. This function makes
that information available.)

EXCEPTIONS
Invalid™pkt(id);

DERIVATION LENGTH(In packets(id).d);

VFUN In~packets(Pkt~id id) -> Packet p;
HIDDEN;
INITIALLY p = ?;

VFUN Current~ids() -> SET~OF Pkt~id id;
HIDDEN;
INITIALLY 1d = {);

OVFUN Receive(Char~str da, pcol; BOOLEAN blk) -> Pkt~id 1d;
$(The RESOURCE™ERROR exception can be mapped ty a higher lev
machine into either busy waiting or a software inter~upt.)

EXCEPTIONS
RESCURCETERROR ;

EFFECTS
id = NEW(Pkt™id);
In~packets(id) = EFFECTS"OF Recv™fm™net(da, pcol, blk);
In“packets(id).ttl > 0 =>
‘Current™ids() = Current™ids () UNION {id};

$(The description states that packets are never delivered
with time to 1live <= 0. The intent is to check this
field whenever the header is processed so as to purge
the net of undeliverable packets. This 1is an
implementation decision; the above specifies only what
will be true 1if the packet is delivered to the user
interface.)

ENDTYMODULE

- 52 -

c. Module: VirtTnet

At the user interface the network can be viewed as a collection of
packets bound for a particular protocol at a particular destination.
The best data representation would be as a multiset(6). Unfortunately,
Special does not support multiset as a primitive data type. It is
possible to define a module in Special to irplement multisets but it is
a rather 1involved process (due to the lack of features to encapsulate
data types) which would add nothing to this presentation. For this
presentation we will assume that MULTISET OF is a predefined type with

operations to add and subtract elements.

It would be possible to use the VECTORTOF comnstruct to represent
the network with the receive done on a random element. If
properties about performance were of concern using a vector wéuld
probably present a construct closer to the properties that the actual
implerentation would have. The probability of receiving a
packet could be based on its position irn the cueue which would te a

function of when it uvas sent.

Sore of the effects of the communication network on the actua..
data transfer can be modeled in a way similar to the suppgestion of hov
to take into account parity errors in PS0S [Neu77]. This 1involves
specifving OFUNs which have the error as their effects. This function

can then be "called" by the offending 'process". The verification

(6) A rultiset is a structure similar to a set except that
duplicates are allowed. Adding two multisets results in a
multiset with each element occurring the sum of its occurrences
in the original onmultisets. Subtraction behaves in a similar
manner.

- 53 -

must take into account that the implementation behavior of an abstract

machine 1is not known. In implemeutation proof {t will still not be
known except probabilistically. This means probabilistic methods will
need to be introduced into the proof. The verification will give

oanly a level of confidence.

{ODULE Virt“net
TYPES

Mset: MULTISETOF Packet

Char~str: VECTORTOF CHAR;

Options: SET"OF Char~str;

Pkt~id: DESIGNATOR;

Type~of “serv: STRUCT™OF (CHAR precedence; Flag strm;

CHAR reliability; Flag svsr, speed);

Packet: STRUCT OF(Type~of “serv tos; INTEGER ttl;

Char~str pcol, sa, da; Options o; Data d);

FUNCTIONS

VFUN Network(Char“str da, pcol) => Mset p;
$(The network is the set of packets bound for a destinatior
address. The packets are sorted by protocol at this level
since a process receiving from the net will be doing the
receive based on a call from a higher level protocol.)

HIDDEN;
INITIALLY p = ?; -

OVFUN Recv ™ fm net(Char~str da, pcol; ROOLEAN blk) -> Packet p;
$(This function chooses a packet from those awaiting
delivery, removes it from that set and returns it to the
caller. This function points out another problem with
Special. The description calls for receive to be either
blocking or non-blocking. As shown here it 1is blocking,
although a sirmple change could make it non-blocking. The

problem 1s that Special does rot allow this either/or.)

DEFINITIONS
Packet p IS p INSET Network(da, pcol);
EXCEPTIONS
RESOURCE “ERROR
- 54 =

EFFECTS
‘Network (da, pcol) = Network(da, pcol) = {p};

OFUN Send~to net(Packet p);
$(This function places a packet into the set of packets for
delivery to a particular destination address and
protocol.)
EXCEPTIONS
RESOURCE “ERROR

EFFECTS
‘Network(p.da, p.pcol) = Network(p.da, p.pcol) + (p};

OFUN Dup~pkt(Mset n);
$(This function is "implemented" by the network. It
duplicates an arbitrary packet.)
DEFINITIONS
Packet p IS p INSET n;
EFFECTS
‘n =n + {p};

OFUN Drop~pkt{(Mset n);
$(This function is "implemented" by the network. It removes
a packet from those to be delivered.)
DEFINITIONS
Packet p IS p INSET n;

EFFECTS
‘n=n - {p};

END™MODULE

6. INTERNET PROTOCOL IN DETAIL

The above specification is only an interface specification.
It would be adequate for a user of the IP interested only in sendinp
datagrams; a user who did not need to use detailed knowledgfe about the
implementation to improve efficiency. It 1is not an 1internal
(implementation) specification. In operating system design an
interface specification 1is often sufficient since two operating svstems

which present the sarme user interface will allow the same progran

- 55 -

AT er T e W, s e - et v e —————— - — .
o ¥ d
4jiﬂ‘-n-------------r . -

to run; the internal details are immaterial. In the realm of

protocols, however, the internal specification is important as
different implementations must be able to communicate (i. e. they must

have "compatible" implementations).

Different networks may have different network access protocols; the
implementation must provide for some means of moving datagrams between
them. This is the responsibility of a network gateway. A gateway is a
point where two networks in the catenet are interconnected. In the ARPA
internet experiment a gateway [Str79] has three responsibilities:
internet routing, fragmenting (but not reassembling) a datagram which is
too large to pass through the net to which it 1s being routed and
encapsulating and decapsulating internet datagrams with respect to the

network access protocols of the nets being interconnected.

A gateway can be thought of as consisting of two halves = one at
the entering point and one at the exit point. In this model each host
contains half of a gateway. A gateway connecting more than two networks
seems contradictory when drawn that way, since it contains more than two
halves, but that is a function of the point of view - there 1is no

contradiction.

The user interface specification deals completely with abstract
objects (1.e. addresses are character strings). The detailed
refinement has a series of abstract machines which provide the
functionality to run interface specification on a network access

protocol.

- 56 =

e o i SN I P i s

A trial decomposition is given in figure 7. The IP 1{s decomposed
into four layers: HNost-Host virtual, Host-Host physical, Net-Net, and
Net-Access. The first of these is the machine shown in the previous
section. It provides an interface to those higher level protocols which
require nothing more than a datagram service. The next lower abstract
machine provides the necessary translations for the virtual datagram
layer to be implemented. It can also be used as a visible interface by
protocols which are 1interested in having some control over the
transmission of its datagrams. The Net-Net layer is responsible for
fragmentation and internet routing. The Net-Access layer is the

abstract machine interface which the IP runs on.

H H
H-H Virt | [
Virtual to physical binding
H-H Phys [[
Internet Routing
Net-let - G- R o it |
Fragmentation
Net-Access [==Ne=—eN-ce-N-=f===N ... N +4¢ N N |
Fig. 7

This decomposition, though simple and straightforward, has a
problem -~ 1t requires that the Net-Net layer hide fragmentation from
the hosts. To do this would require that datagrams be fragmented and
reassembled on a network by network basis. The IP does not do this for

two reasons. If gateways had to do reassembly all fragments of a

- 57 =

datagram would have to leave a net via the same gateway which would
prevent load-sharing between gateways at the datagram level and
requiring the gateways to do reassembly would require the gateway to be
larger and more complex than not doing so. (It should be noted that the
PUP architecture, using different design criteria, came up with a design
which did require gateways to do reassembly. The above decomposition

would probably be quite appropriate for the PUP architecture.)

Attempting to rearrange the levels to fit the IP 1led to the

discovery that <the i{nitial guess fortuitiously placed the internet

routing decision correctly with respect to fragmentation. It is not a
free decision because, 1f a return route option (RRO) is present in the
IP header, a datagram which did not need fragmenting before the RRO was
updated can need fragmenting after the RRO is updated. After a few

trials the decomposition in figure 8 was arrived at and used.

H H
H~H Virt | | |
{
Virtual to physical Virtual to physical
binding bincing
H~H Phys | |
Internet Routing Reassembly
Net_“et , G G e G l
Fragrentation
Net-Access |==N===NeeceeNoNeaaNe===ll ... N N |
Fig. 8
- 5§ -

The implementation was divided into ten modules distributed among

four levels. The modules at each level are shown in figure 9.

Level 4: Inet“send Inet recv Vire et

Level 3: Phys~send Phys“recv Phys™Net

Level 2: Inet™rt Reassemble Phys™Net

Level 1: Make “frag Recv~frag Phys~Yet
Fig. 9

a. Module: Phys™send
This module provides physical representation for the virtual
objects defined in the Inet send module. It also includes the IP header

fields omitted from the Inet~send.

}'ODULE Phys send
TYPES

Quartet: {0..15};

Byte: {(0..2"Byte~size-1};

Net™id: Byte;

Phys~addr: {VECTOR™OF Byte p | LENGTH(p) = Addr~size};

Inet " addr: STRUCTOF(llet™id net; Phys~addr a);

Half"wd: {(0..2"(Word“size/2)=1};

Flag: BOOLEAl;

Data: VECTORTOF Byte;

Char®str: VECTOR™OF CHAR;

Pkt~id: DESI®IATOR;

Type~of “serv: STRUCT™OF (CHAR precedence; Flag strm; ﬁ
CHAR reliability; Flag svsr, speed);

Packet: STRUCT OF (Quartet v; Type of “serv tos; Byte rtl, pcol;

Inet~addr sa, da; Data o, d);

PARAIETERS

Quartet Version;

SET™OF Net~id Known™nets;
SET™OF Met~id Neighbors;
SET™OF Inet~addr Source™addrs;

- 59 =

Inet~addr Default™source™addr;
SETTOF Byte t!on~dup”optn;

DEFINITIONS
BOOLEAN Invalid net(Ilnet~addr da) IS
NOT (da.net INSET KnovnTnets);
$(The IP 1is not responsible for 1interpreting network
specific addresses. All it can check is tha: the network
field addresses a network it can knows about.)

BOOLEAN Invalid“sa(Inet~addr sa) IS NOT(sa INSET Source~addrs);

BOOLEAN Invalid™pkt(Pkt~id id) IS "T(id INSET Current~ids());

EXTERNALREFS

FROM PhysTnet:
OFUN Send~to~net(Packet p);

INTEGER Byte~size; $(Currently 8 bits)
INTEGER Addr~size; $(Currently 3 bytes)
INTEGER Word size; $(Currently 4 bytes)

FROM Inet™rt:
INTECER Max~inet~pkt; $(Currently 2%**16-1 bytes)
INTEGER Max~inet™hdr; $(Currently 15 words, 60 bytes)
INTEGER Min~inet™hdr; $(Currently 5 words, 20 bvtes)

ASSERTIONS
Default~source~addr INSET Source~addrs;

$(This assertion bounds the size of the IP header)
FORALL Pkt™1d id:
LEIGTH(OptionTfield(id)) <= Max“inet“hdr - in~inet hdr;

$(This assertion bounds the size of an IP datagram.)
FORALL Pkt~id id:

MinTinet™hdr + LENCTH(Option~field(id)) + LENCTH('sg(id))
<= Max“inet pkt;

FUNCTIONS

VFUY Type~of “service(Pkt~id id) -> Tvpe~of “serv tos;
ILINDFRY;
INITIALLY tos = ?;

VFIN! Tire~to™live(Pkt~id id) =-> INTECER ttl;
S(Tire reasured in seconds)
BIDDEYN ;
INITIALLY ttl = ?2;

- 60 =

VFLN

VFUN

VFUN

VFUN

VFUN

VFUN

VFuH

Protocol (Pkt~1d 1id) -> Quartet p;
HINDEN;
INITIALLY pcol = ?7;

Source~addr(Pkt~id i{d) => InetTaddr s;
HIDDEN ;
INITIALLY sa = Default™source addr;

Dest~addr(Pkt~id id) -> Inet~addr d;
IIIDDEN ;
INITIALLY da = 7;

Option~field(Pkt~id id) =-> Data opt;
HIDDEN ;
INITIALLY o0 = 73

Msg (Pkt~id id) ~> Data m;
FIDDEN;
INITIALLY m = 7

Packets “in"prog(Pkt~id id) => Packet p;
EXCEPTIONS
Invalid™pkt (id);

DERIVATION
STRUCT (Version,
Type~of “service(id),
Time~to~1live(id),
Protocol(id),
Source~addr (id),
Dest~addr(id),
Option~field(id),
Msg(id));

Current “ids () => SETTOF Pkt~id id;
HIDDEL
INITIALLY id = { };

CVFUN Make™pkt () -> Pkt~id id;

GFUN

EFFECTS
id = NEW(Pkt~id};
‘Current™ids{() = Current~ids() UNION {id};

Set tos (Tvpe~of “serv tos; Pkt~id id);
$(The descriptinn places no restriction on setting the fields
of the type of service. In the future it may be necessary
to add sorme checking on the use of the priority field.)
EXCEPTIONS
Invalid "pkt(id);

EFFECTS
‘Type~of “service(id) = tos;

-6l -

OFUl

OFUN

OFUN

OFUN

OFUN

OFUN

OFUN

Set~ttl(Byte ttl; Pkt~id id);
$(Time measured in seconds)
EXCEPTIONS

Invalid~pkt(id);

LFFECTS
‘Time~to~live(id) = ttl;

Set protocol (Quartet pcol; Pkt~id 1d);
EXCEPTIONS
Invalid~pkt (id);

EFFECTS
‘Protocel(id) = pcol;

Set“source~addr(Inet™addr sa; Pkt7id id);
EXCEPTIONS

Invalid™pkt (id);

Invalid~sa(sa);

EFFECTS
‘Source”addr(id) = sa;

Set~"dest"addr(Inet~addr da; Pkt~id 1id);
EXCEPT IONS

Invalid™pkt (id);

Invalid"net(da);

EFFECTS
‘Dest~addr (1d) = da;

Set options(Data opt; Pkt™id 1id);
EXCEPTIONS
Invalid~pkt(id);

EFFECTS
‘Option~field(id) = opt;

Set™Msg(Data m; Pkt™id id);
EXCEPTIONMS
Invalid pket (1d);

EFFECTS
"Msg(id) = m;

Destroy (Pkt “id id);
$(See comment in Inet“send module)
EXCEPTIONS

Invalid“pkt (id);

EFFECTS
‘Current™ids() = Current™ids() DIFF {id};

- 62 =

CFUN Dispatch(Pkt™id 1id);
EXCEPTIONS
Invalid~pke(id);

EFFECTS
Current™ids () = Current~ids() DIFF (id};
EFFECTS "OF Send~to™net (Packets™in pror(id));

END™MODULE

. Mocdule: Phys recv

This module is the counterpart of the Phys“send rodule

receive side.

MOSULE Phys~recv
TYPES

Quartet: {0..15};

Byte: {0..2"Bytesize-1};

Net™id: Bvte;

Phys Taddr: {(VECTOR™CF Bvte p { LENGTH(p) = Addr size};

Inet™addr: STRUCT OF(Met~id net; PhysTaddr a);

Half~wd: {0..2"(Vord“size/2)-1};

Flag: BOOLEAY;

Data: VECTORTOF Byte;

Char~str:; VECTORTOF CHAR;

Pke~id: DESICNATOR;

Tvpe~of “serv: STRUCTTOF(CHAR precedence; Flag strm;
CHAR reliability; Tlag svsr, speed);

on

Packet: STRUCTTOF(Quartet v; Type~of “serv tos; Byvte ttl, pcol;

Inet~addr sa, da; Data o, d);

PARANMETERS

Quartet Version;
SET"OF Inet~addr Dest ~addrs;

DEFINITIONS

POOLEAN Invalidpkt(Pkt~id 1id) IS NOT(id INSET Current ids());

BOOLFAN Invalid™da(Inet~addr da) IS NOT(da INSET Dest~addrs);

- 63 -

R - L, e w

the

EXTERNALREFS

FROM Phys™net:
OVFUN Remove fm ™ net (Inet~addr da) -> Packet p;

INTEGER Byte“size; $(Currently & bits)
INTECER Addr~size; $(Currently 3 bytes)
INTEGER Word size; $(Currently 4 bytes)
FROM Inetrt:
INTEGER Max“inet™pkt; $(Currently 2**16-1 bytes)
INTEGER Max“inet~hdr; $(Currently 15 words, 60 bytes)
INTEGER Min~inet™hdr; $(Currently 5 words, 20 bytes)
ASSERTIONS

FORALL Pkt~ id id:
LENGTH(Option~field(id)) <= Max~inet™hdr - MinTinet™hdr;

FORALL Pkt™id id:

MinTinet~hdr + LENGTH(Option~field(id)) + LENGTH(Msg(id))
<= Max“inet"pkt;

FUNCTIONS
VFUN Type~of “service(Pkt~id id) -> Type“of serv t; -
EXCEPTIONS
Invalid pkt(id);
DERIVATION In“packets(id).tos;
VFUMN Time“to~live(Pkt~id id) => INTECER ¢t;
EXCEPTIONS
Invalid~pkt(id);
DERIVATION In“packets(id).ttl;
VFUN Protocol(Pkt~id id) =~> Quartet p;
EXCEPTIONS
Invalid™pke (id);
DERIVATION In“packets(id).pcol; H
VFUN Source™addr(Pkt~id id) => Inet~addr s;
EXCEPTIONS
Invalidpkt (id);

DERIVATION In~packets(id).sa;

- 64 =

VFUN Dest~addr(Pkt~id id) =-> Inet~addr d;
EXCEPTIONS
Invalid™pkt (id);

DERIVATION In“packets(id).da;
VFUN 0ption~field(Pkt~id id) -> Data opt;

EXCEPTIONS
Invalid~pkt(id);

DERIVATION In~packets(id).o;
VFUN Msg(Pkt~id id) =-> Data m;
EXCEPTIONS
Invalid~pkt (1d);
DERIVATION In“nackets(id).d;

VFUN In~packets(Pkt~id id) -> Packet p;
HIDDEN;

INITIALLY p = ?;
VFUN Current~ids() =-> SET"OF Pkt~id id;
HIDDEN;
INITIALLY id = { };
OVFUN Recv™pkt(Inet~addr da) ~> Pkt7id id;
EXCEPTIONS
Invalid~da(da);
RESOURCE“ERROR;
EFFFCTS
id = NEW(Pkt~id);

‘Current~ids() = {id)} UNION Current™ids();
‘In“packets(id) = EFFECTSTOF Remove~fm™net(da);

END"MODULE

¢+ Module: PhysTnet
At this level the network is viewed as a collecticn of packets
bound for a destination. The packets are not segregated Ly the

particular higher level protocol to which they are directed.

- 65 =

in‘ T ‘ '

MODULE Phys~net

TYPES

Byte: {0..27Byte“size=~l);

Data: VECTORTOF Byte;

Net™id: Byte;

Phys~addr: {VECTOR™OF Byte p | LENGTH(p) = Addr~size};

Inet~addr: STRUCTOF(Net™id net; Phys~addr a);

Half “wd: {0..2"(Word™size/2)-1};

Mset: MULTISET OF Packet

Pkt“id: DESIGNATOR;

Type “of “serv: STRUCT OF(CHAR precedence; Flag strm;

CHAR reliability; Flag svsr, speed);

Inet~hdr: STRUCT™OF (Version v; Quartet ihl; Type of “serv tos;
Half"wd tot”™ln, indent; Flag df, mf; Byte ttl, pcol;
Inet™addr sa, da; Data opt);

Packet: STRUCT OF(Inet™hdr ih; Data msg; BOOLEA!' check™sum);

PARAMETERS
INTECER Byte“size; $(Currently 8 bits)
INTEGER Addr~size; $(Currently 3 bytes)
INTEGER Word“size; $(Currently 4 bytes)
FUNCTIONS

VFUl Network(Inet™addr da) -> Mset p;
$(The network is the set of packets bound for a destination
address.)
HIDDEN;
INITIALLY p = { };

OVFUN Remove rm™net(Inet~addr da) ~> Packet p;
LET p INSET Network(da);
EXCEPTIONS
Empty(da);

EFFECTS
‘Network (da) = Network(da) - {p);

OFUN Send~to“net(Packet p);
EXCEPTIONS
Full(p.da);

EFFECTS
‘Network(p.da) = Network(p.da) + {p};

GFUN Dup~pkt (Addr da);
LET p INSET Network(da);

- 66 =
ST e ¥ T e,—.;
-t

EFFECTS
‘Network (da) = Network(da) + {p};

OFUN Drop ~pkt(Inet~addr da);
LET p INSET Network(da);

EFFECTS
‘Network (da) = Network(da) - {p};

OFUN Modify~pkt (Packet p); y
$(Since the IP only checksums the internet header rodifying
the data has no visible effect as far as IP 1s concerned.
- The second clause of the EFFECTS paragraph is there since
Special explicitly declares that all values not mentioned
in an EFFECTS section are not modified.)
EFFECTS
‘peih = p.ih => ‘p.check™sum = FALSE;
‘pemsg = p.msg OR “p.msg "= p.msg;

END"MODULE
d. lodule: Inet™rt

This module contains the functions to update the routing options of {
the 1IP. Since the RPO is in terms of the net the datagrarm is entering
it rmust have the necessary functions to decide which net this will be.

This module also handles the other options of the header.

MODULE Inet™rt

TYPES

Quartet: {0..15);

Byte: {0..27Byte size=1};

Flag: BOOLEAN;

Net~id: Byte;

Data: VECTORTOF Byte;

Phys~addr: {VECTOR"OF Byte p | LENGTH(p) = Addr~size};
Inet~addr: STRUCT™OF(Net™~id net; Phys~addr a);
Half“wd: {0..2"(ord~size/2)=1);

Pkt ~1d: DESIGNATOR;

- 67 -

Type~of “serv: STRUCT OF (CHAR precedence; Flag strm;

CHAR reliability; Flag svsr, speed);
Route: {VECTOR™OF Inet~addr r | LENGTH(r) < 10};
Route~opt: STRUCT OF(Byte opt type, length; Route rt);
Sec~opt: STRUCTTOF(Byte opt~type, lenpth, sec™lvl, tcc);
Stream: {VECTORTOF Byte s | LENCTH(s) = Stream™{d™~1ln};
Stream™opt: STRUCT OF(Byte opt~type, length; Stream s);
Timest: {VECTOR™OF Byte t | LENGTH(t) = Tirest™ln};
Timest opt: STRUCT OF(Byte opt type, length; Timest t);

$(It is unclear how to handle multiple source route, return
route or security options. The protocol description
neither prohibits such packets nor tells what action to 1
take if one arrives. The specifications do not allow such
packets.)

Packet: STRUCTTOF(Quartet version, ihl; Type~of “serv tos;
Half “wd totln, indent; Flag df, of; Byte ttl, pcol;
Inet~addr sa, da; Route“opt rro, sro; Sec~opt sec;
SET™OF Stream opt str; SET™OF Timest™~opt time; Data d);

PARAMETERS
Inet~addr Net™addr; $(Address for RRO)
INTECER Max~inet~pkt; $(Currently 2*%*]16-]1 Bvtes)
INTEGER Max~inet™hdr; $(Currently 60 Bytes)
INTEGER Min“inet~hdr; $(Currently 20 Bvtes)
INTEGER Stream~id~1ln; $(Currently 2)
INTEGER Timest™1ln; $(Currently 4)
SET™OF Byte Known nets;
SET OF Byte Valid“timest~opts; $(Currently Satnet and

Internet)
Byte Source route;
Byte Return route;
DEFINITIONS
BOOLEAN Unknown net(Net™id net) IS NOT (net INSET FKnown nets);
BOOLEAN No“rr~opt(Packet p) IS p.rro = ?;
BOOLEAN Empty~sr(Route™opt r) IS LENGTH(r.rt) = 0;
BOOLEAN liot “empty (Route~opt r) IS LENCTH(r.rt) "= 0;

BOOLEAN Not~sro(Route~opt r) IS
NOT (r.opt~type = Source route);

BOOLFAN Not“rro(Route~opt r) IS
NMOT (r.opt~type = Return " route);

- 68 -

,--' ’ . -

BOOLEAN Invalid~ts~opt(Timest~opt t) IS NOT (t.opt~type INSET
Valid“tirest~opts);

BOOLEAN Invalld pkt(Pkt~1id {d) IS NOT(id INSET Current~ids());

EXTERNALREFS
FROM Phys“net:
INTEGER Byte“size; $(Currently 8)
INTEGER Addr~size; $(Currently 3)
INTEGER WYord size; $(Currently 4)
FUNCTIONS

VFUN Packets(Pkt~id id) ~> Packet p;
EXCEPTIONS
Invalid pke (id);

INITIALLY p = ?;

VFUN Current~ids() =-> SET OF Pkt~id id;
HIDDEN;
INITIALLY 4d = { };

VFUN Next“dest(Pkt~id id) => Inet™addr d;
DEFINITIONS
Route™opt r IS Packets(id).sro;

EXCEPTIONS
Invalid~pkt (id);
Fmpty ~sr(Packets(id).sro);

DERIVATION r.rt{(r.length -2)/Word~sizel;

OFUN Update~sr(Pkt~id id);
EXCEPTIOINS
Invalid®pkt (id);
Espty~sr(Packets(id).sro);

EFFECTS
’Packets(id).da = Next“dest(id);
‘Pactets{id).sro.length = Packets(id).sro.len~th - Vord~size;
‘Packets(id).ihl = Packets(id).ihl - 13
‘Packets(id).totln = Packets(id).totln - Word“size:

S(Note: the header lenpgth is measured in words whereas the
total leneth is in octets.)

- 69 -

) OFUN

OFUN

OFUN

OFUY

OFUN

OFuli

Update re(Pkt™id id);
EXCEPTIONS
Invalid™pkt (1d);
No~rr~opt (Packets(1d));
RESOURCE "ERROR ;

EFFECTS

‘Packets(id).totln = Packets(id).totln + Word size;

‘Packets(id).ihl = Packets(id).ihl + 13

*Packets(id).rro.lenght = Packets(id).rro.length + Word“size;
*Packets(id).rro.rt[(Packets(id).rro.length ~2)/Word~size]

Set~sro(Pkt~id id; Route~opt sr);
EXCEPTIONS

Invalid“pkt(id);

Not~sro(sr);

EFFECTS
‘Packets(id).sro = sr;

Request™rro(Pkt~id id; Route~opt rr);
EXCEPTIONS

Invalid™pkr(id);

Not~rro(rr);

Not empty(rr);

RESOQURCE™ERROR ;

EFFECTS
‘Packets(id).rro = rr;

Set~sec™opt(Pkt~id 1id; Sec”opt s);
EXCEPTIONS

Invalid“pkt (id);

RESOURCE “ERROR ;

EFFECTS
‘Packets(id).sec = s;

Set~str opt (Pkt~id id; Strear opt s);
EXCEPTIONS

Invalid™pkt (1d);

P.ESOURCETERROR ;

EFFECTS
‘Packets(id).str = Packets(id).str UNION

Set~time opt(Pkt~id 1id; Timest™opt t);
EXCEPTIONS

Iavalid~pkt (id);

Invalid~ts™opt(t);

RESOURCE“ERROR ;

= Net~addr;

{s};

LFFECTS
‘Packets(id).time = Packets(id).time UNION {t};

$(The next two functions provide the 1interface level of the
pateway to gateway protocol [Str79). They are responsible for
maintaining and updating routinpg information for the hosts
within the internet.)

VFUN Next™net(Net™id dn; Type~of~serv tos) -> Net™id n;
HIDDEN
INITIALLY n = ?;

OFUN Update~rt~info(Net™id dest™net, nxt“net; Type of “serv tos);
EXCEPTIONS
Unknown " net(dest™net);
Unknown net (nxt “net);

EFFECTS
“Next “net{(dest " net, tos) = nxt net;

END™MOTLULE

e. Module: Reassemble
This module maps datagram fragments into complete datagfraps. Its

purpose is to present only "whole" datagrams to the Recv™phys level.

MODULE Reassemble
TYPES

Cuartet: {0..15};

Dyte: {0..27Byte“size-1};

Offset: {0..Max"offset)};

Net~1id: Byte;

Phys “addr: {VECTOR™OF Byte p | LENCTH(p) = Addr~size};

Inet~addr: STRUCT OF (et~ id net; Phys~addr a);

Flag: BOOLEAN;

Half~wd: {0..2"(Word~size/2)~1};

Data: VECTOR™OF Byte;

Type~of “serv: STRUCTOF (CHAR precedence; Flag strm;

CHAR reliability; Flap svsr, speed);

Packet: STRUCT OF (Quartet v, ihl; Type of “serv tos;
Half“wd totln, ident; Flag df, mf; Offset fo;
Byte ttl, pcol; Inet~addr sa, da; Data opt, d);

- 7] -

-——

PARAMETERS
Quartet Version;
INTEGER Max offset;
SET™OF Byte Known~pcols;
SETOF Byte Known™nets;
DEFINITIONS

BOOLEAN Incomplete~datagram(Ralf~wd id; Offset f; Byte pcol; .]
Inet~addr sa, da) IS MNOT Pkt complete(id, pcol, sa, da); i

BOOLEAN Bad™pcol(Packet p) IS NOT (p.pcol IMSET Known pcols);
BOOLEAN Not~frag(Packet p) IS p.mf = FALSE AND p.fo = 0;

BOOLEAN No~last~frag(Half~wd id; Byte pcol; Inetr~addr sa, da)
IS NOT (EXISTS Offset f: More frags(id, f, pcol, sa, da) =

TRUE);
EXTERNALREFS
FROM Phys "net:
INTEGER Byte“size; $(Currently 8)
INTEGER Addr~size; $(Currently 3)
INTEGER Word“size; $(Currently 4)
FROM Inet™rt:
INTECER MinTinet™hdr; $(Currently 20 Bytes)
FUNCTIONS

VFUN Header~ln(Half~wd id; Offset f; Byte pcol; Inet~addr sa, da)
-> Quartet ihl;
HIDDEK ;
DEFINITIONS
INTEGER 1 IS LEKGTH(Options(id, £, pcol, sa, da));

DERIVATION MinTinet™hdr + 1/WordTsize;

VFUN Total™ln(Half™wd id; Of“-et Byte pcol; Inet~addr sa, da)
-> INTECER i,
HIDDEN;
INITIALLY 1 = O;

$(The following four VFUNsS have no counterpart in the reassembled
datagram. The description gives no method to derive them from
the fragments of a datapram nor are they returned at the
interface to the IP.)

- 72 =

VFUuN

VFUN

VFUN

VFUN

VFUN

VFUN

VFUN

VFUN

VFUN

Ident(Half“wd id; Offset f; Bvte pcol; Inet~addr sa, da)
~> INTEGER i;

HIDDEN;

INITIALLY i = O;

More~frags (Half~wd id; Offset f; Byte pcol; Inet~addr sa, da)
-> BOOLEAN m;

HIDDEN ;

INITIALLY m = 73

Frag~offset (Half wd id; Offset f; Byte pcol; Inet~addr sa, da)
-> INTEGER 1

HIDDEN;

INITIALLY {1 = O3

Time“to~live(Half~wd id; Offset f; Byte pcol; Inet~addr sa, da)
-> INTEGER t;

HIDDEN;

INITIALLY t = Q3

Options(Half“wd id; Offset f; Byte pcol; InetTaddr sa, da)
-> Data o;

HIDDEN;

INITIALLY o = ?;

Msg(Half“wd id; Offset f; Byte pcol; InetTaddr sa, da)
=> Data m;

HIDDEN;

INITIALLY m = ?;

Checksum(Half~wd id; Offset f; Bvt. pcol; InetTaddr sa, da)
=> INTEGER c;

HIDDEN;

DERIVATION ?;

Frag blk~“table(Half~"wd id; Bvte pcol; Inet~addr sa, da;
INTEGER blk™no) -=> BOOLEAN m;
$(The table keeps track of which pieces of a datapram
have been received)
HIDDE! ;
INITIALLY m = ?;

Pkt~ complete(lialf~wd id; Byte pcol; Inet~addr sa, da)
-> BOOLEAN r;
DEFINITIONS
INTEGER Max™blk IS LET INTEGER f |
More~frags(id, £, pcol, sa, da) = FALSE
IN Frag~offset(id, f, pcol, sa, da) +
Total~1ln{id, £, pcol, sa, da) -
Header~1n(id, f, pcol, sa, da);

- 73 -

-y

EXCEPTIONS
No~last~frap(id, pcol, sa, da);

DERIVATION FORALL INTECER i | O < i AND 1 <= Max“blk:
Frag~blk~table(id, pcol, sa, da, i) = TRUE;

$(The following functions present the visible interface of this
module. They make available the fields of the datagram after
reassembly. The R preceeding the name indicates that it is for
a reassembled datagram.)

VFUN Rhdr~1n(Half"wd id; Byte pcol; Inet™addr sa, da)

-> INTEGER 1n;
DEFINITIONS

INTEGER 1 IS LENGTH(R options(id, pcol, sa, da});

EXCEPTIONS
Incomplete~datagram(id, pcol, sa, da);

DERIVATION Min~inet~hdr + 1/Vord~size;

VFUN R7type~of “service(Half wd id; Bvte pcol; Inet~addr sa, da) =>

Type~of “serv tos;
EXCEPTIONS

Incomplete~datagram(id, pcol, sa, da);

INITIALLY tos = ?;

VFUN RTtotal"ln(Half wd id; Byte pcol; Inet~addr sa, da) => INTEGER 1;
EXCEPTIONS
Incomplete™datagram(id, pcol, sa, da);

INITIALLY 1 = ?;

VFUN R options(Half wd id; Byte pcol; Inet~addr sa, da) -> Data o;
EXCEPTIONS

Incormplete~datagram(id, pcol, sa, da);
INITIALLY o = 7;

VFUN R~data(Half“wd id; Byte pcol; Inet~addr sa, da) => Data m;
EXCEPTIONS

Incomplete“datagram(id, pcol, sa, da);

INITIALLY mn = ?;

OFUN Reas~frag(Packet p);
DEFINITIONS
INTEGER st IS 8*p.fo;
INTEGER fn IS st + p.totln = p.ihl;

- 74 -

A
.
T S - Eem W, s W
. .
A4JlIIE-t-----------44 VY

EXCEPTIONS
Not~frag(p);
Bad~pcol(p);

EFFECTS
‘R~type~of "service(p.ident, p.pcol, p.sa, p.da) = p.tos;
p.fo = 0 =>
‘RToptions(p.ident, p.pcol, p.sa, p.da) = p.opt;

FORALL INTEGER 1| st <= 1 AND 1 <= fn:
‘R~data(p.ident, p.pcol, pe.sa, p.da)[i] = p.d[i=-st];
FORALL INTEGER i| p.fo < 1 AND 1 < (p.totln/8 - p.fo):

‘Frag™blk~table(p.ident, p.pcol, p.sa, p.da, i) = TRUE;

$(The total lenght must be divided by eight because the
fragment offset is measured in units of eight bytes.)

END™MODULE

f. Module: Send frag

This module implements fragmentation at the source end. This
module provides a method of fragmenting datagrams so that unique
reassembly can take place. Datagrams are identified by four items: the
protocol above the IP which 1is sending them, the source address,
the destination address and the identification field. Any two
datagrams with these fields identical are considered identical by
the IP. To distinguish between fragments of the same datagram the
fragment offset and total length field (or more fragments field) are
needed. Since this would require the next level to keep track of
offsets, unique identifiers are generated. The next level can then

simply ask for the identifiers which correspond to a given datagram.

NODULE Send " frag

TYPES
Quartet: {0..15);
Byte: (0..27Bvte size~1};
Half“wd: (0..2"(Vord~size/2)=1};

- 75 =

Offset: {C..tllax"offset);

Net™1d: Byte;

Flag: BOOLEAN;

Frag~des: DFESIGNATOR;

Local~addr: {VECTOR™OF Byte a | LENGTH(a) = Addr~size};

Inet~addr: STRUCT™OF(Net~1id net; Local~addr la);

Data: VECTOR™OF Byte;

Type~of “serv: STRUCTTOF(CHAR precedence; Flag strm;

CHAR reliability; Flag svsr, speed);

Packet: STRUCTTOF(Quartet v, ihl; Type~of “serv tos;
Half"wd totln, ident; Flag df, mf; Offset fo;
Byte ttl, pcol; Inet~addr sa, da; Data opt, d);

$(Although the order of fields in a structure is irrevelent
as far as SPECIAL is concerned they are ordered here as

actually irplemented to make the mapping to the implerentation

as straight forward as possible.)
PARAMETERS
Quartet Version;
INTEGER Max™~frag;
INTEGER Max“offset;
SET"OF Byte Known“pcols;
SET™OF Byte Supplying~ids;
SET™OF Net™~id Known™nets;
SET™OF Net~id Neighbors;
DEFINITIONS
BOOLEAN Unknown™net(Net™id n) IS MOT(n INSET ¥nown™nets);
BOOLEAN Poor pcol(Byte p) IS NOT(p INSET Supplyinp~ids);
BGOLEAN Df “set(Packet p) IS p.df = TRUE;
BOOLEAN Too~big(INTEGER p) IS p > Max“frag;

BOOLEAN Bad“start pos(INTEGER i, j) IS (i !'OD Byte“size ~=0)
OR (4 >= j);

BOOLEAN Bad~end “pos(Packet p; INTECER i) IS (i MOD Bvte~size ~=0)

AND (p.d[i+l] "= 7);
$(All fragments except the last one must be a rmultiple of
eight in length.)
EXTERNALREFS

FPOM Phys net:
OFUN Send~to"net (Packet p);

- 76 =

INTECER Byte~size; $(Currently 8)
IUTEGER Addr size; S(Currently 3)
INTEGER liord size; $(Currently 4)

FROM Inet"rt:

INTEGER Max™inet™hdr; $(Currently 60 bytes)
NTEGER MinTinet™hdr; $(Currently 2C bytes)
ASSERTIONS

FORALL Packet p: LENGTH(p.opt) MOD Vlord~size = 0;
FORALL Packet p: LENCTH(p.opt) <= Max"inet"hdr - IinTinet hdr;
FORALL Packet p: p.df = TRUE => p.nf = FALSE AND p.fo = 0}

$(This is the intent of the current description although it
is not explicitly stated as such)

FUNCTIONS

VFUN F Header~ln(Fras~des id) -> Quartet ihl;
HIDDEN;
DEFINITIONS
INTEGER 1 IS LENCTH(F Options(id));

DEPIVATION MinTinet hdr + 1/Uord~size;

VFUM F Tvpe~of “service(Fras des id} => Type~of “serv i;
HIDDEYN ;
INITIALLY ¢t = ?;

VFUN F~Total~ln(Frag~des id) =-> Half™wd 1i;
HIDDEMN;
INITIALLY { = 03

VFUN F~ldent(Frap des id) => Half“wd 1{i;
HIDDEYN
IITIALLY 1 = (3

VFUN TTDane“frap(FrarTdes id) ~> GOOLLAY df;
oy

CUTIALLY ¢ o= YoLSLG

roTiraec {rarTdes 1d) => BOCLEAD 3

VFUN F'Frag‘éffset(?rag“des id) => Ealf~wd 1i;
HIDDEN;
INITIALLY i = O;

VFUM F Time to~live(Frag~des id) -> Bvte t;
HIDDEN;
INITIALLY t = Q;

VFUN F~Protocol(Frag~des id) => Byte p;
BIDDEN;
INITIALLY p = O3

VFUN F~Source™addr (Frag~des id) => Inet™addr s;
HIDDEN ;
INITIALLY s = ?7;

VFUNI! F Dest™addr(Frap~des id) ~> Inet™addr d;
HIDDEN;
INITIALLY d = 73

VFUN F Options(Frag~des id) => Data o;
HIDDEN;
INITIALLY o = ?7;

VFUN FMsg(Frag~des id) => Data m;
HIDDEN ;
INITIALLY m = ?7;

VFUN F~Checksum(Frag~des id) => Half wd c;
HIDDEN ;
DERIVATION 7;

VFUN Fragments(Frag~des 1d) -> Packet p;

HIDDEN;

DERIVATION
STRUCT (Version,
F Header~1ln(id),
F~Type~of “service(id),

“Total™1ln(id),

F~ldent (id),
F~Dont “frag(id),
Flore“frags(id),
F Frag offset(id),
F Time“to"live(id),
F Protocol(id),
F~Source~addr(id),
F~Des:~addr(id),
F~ Options(id),
FMsg(1id),
F~Checksum(id));

OFUN Dispatch(Frag~des 1id);
EXCEPTIONS
RESOGURCE“ERROR ;

EFFECTS
EFFECTS OF Send~to net(Fraprents(id));

VFUN Frags™of “pkt(lalf"wd id; Byte pcol; InetTaddr sa, da)
~> SET™OF Frag des fd;

EXCEPTIONS
Poor~pcol(pcol);
Unknown " net(sa.net);
Unknown “net (da.net);

INITIALLY £d = { };

OVFUN Fragment(Packet p; I!NTEGER srt pos, end pos) => Frag~des id;
$(In the IP des-ription the fragmentation algorithm is given
as an operarional definition. This specification embodies
the same concent as an abstract machine definition.)
EXCEPTIONI'S
Df~set(p.idert, p.rcnl, p.sa, p.da);
Bad start pus{(srt pos, end pos);
Bad~end“pos (p, end~pos);
Too ™ big(end pos = srt pos);

EFFECTS
id = NEW(Frar~des);
‘Frags~of “pkt (p.ident, p.pcol, p.sa, p.da) =
Frags~of “pkt (p.ident, p.pcol, p.sa, p.da) UNION {id};
“TvpeTof “service(id) = p.tne;

‘F Ident(1d) = p.idunt;

S(The don’t fragment flag need not be set as the initial value
is correct. The same is true for the mnre fragments flap
for be last fragment.)

end "pos ~= LENCTH(p.d) => ‘FMore~fraps(id) = TRUE;

‘F Fras~cffset(id) = srt™pos/(2*ord size);

‘F Time to~live(id) = p.ttl;

‘F~Protocol(id) = p.pcol;

‘F~Source~addr(id) = p.sa; ﬂ

‘F~Dest "addr{id) = n.da;

srt"pos = 0 => “F Options(id) =

First~frar opts(p.ident, p.pcol, p.sa, p.da);
srt™pos “= 0 => “F Options(id) =

All~frag~opts(p.ident, p.pcol, pesa, p.da);
‘FMsg(id) = VECTOR(FOR 1 FROM srt~pos TO end pos: p.d{i]);

FD™MODULFE

g+ Module: Recvfrag

Although this module 1s the counterpart of the rmodule Send™frap, it

is rmuch simpler because it is not responsible for reassemtling the
fragments created by Send~frag. Because datagrams are not reassermbled
at this level, the problem of distinguishing between a dataprac and its

first fragment does not reoccur here.

MODULE Recv™frag
TYPES

Quartet: {0..15);

Byte: {0..2"Byte“size-1};

Half~wd: {0..2"(Vord“size/2)~1};

Net™id: Byte;

Offset: (0..Max“offsetr);

Flag: BOOLEAN;

Frag~id: DESIGCNATOR;

Local~addr: {VECTOR™OF Byte a | LENGTH(a) = Addr size};

Inet~addr: STRUCT OF(Net~id net; LocalTaddr la);

Data: VECTORTOF Byte;

Type~of “serv: STRUCTTOF(CHAR precedence; Flag strm;

CHAR reliability; Flag svsr, speed);

Packet: STRUCT OF(Quartet v, ihl; Type~of “serv tos;
Half“wd totln, indent; Flag df, mf; Offset fo;
Byte ttl, pcol; Inet“addr sa, da; Data opt, d);

PARAMNETERS
Quartet Version;
INTEGER Max~offset;
SET~OF Byte Known~pcols;
SET"OF Byte Known nets;
DEFINITIONS

BOOLEAN Invalid~id(Frag™id fd) IS NOT(fd IMSET Current~ids());

EXTERNALREFS

FROM PhysTnet:
OVFUN Renove™fm™net (Inet~addr da) =-> Packet p;

~ 80 ~

R,

INTEGER Byte~size; $(Currently 8)

INTEGER Addr~size; $(Currently 3)
INTEGER Viord“size; $(Currently 4) ‘
FROM Inet’rt:
INTEGER Min~inet™hdr; $(Currently 20 bytes)
FUNCTIONS

VFUN Offsets(Half wd id; Byte pcol; Inet~addr sa, da) =>
SET™OF Offset o;
$(The description calls for the most recent arrival to be
used so there is no neecd to store duplicate information
if two frapments arrive with the same offset.)
HIDDEN; |
DERIVATION o = {);

VFUN In~frags(Frag~id fd) -> Packet p;
HIDDEN;
INITIALLY p = 7;

VFUN Current™ids() -> SET OF Frag™id id;
HIDDEN;
DERIVATION id = { };

OFUN Recv™pkt (Inet~addr da);
EXCEPTIONS
RESOURCETERRCR;

LFFECTS
fAd = NE'(Frag~id);
‘Currerc™ids() =~ {fd} UNION Current™ids();
‘In~fraps(fd) = NFFECTS™OF Remove ™ frnrt(da);

CFUN Set offset(Frag~id fd);
EXCEPTIOMNS
Invalid™id(fd); i

EFFECTS
Offsets(In~frags (fd).id, InTfrags(fd).pcol, In~frags(fd).sa,
In“frags(fd).da) = In~frags(fd).fo;

OFUN Destroy(Frag™1id fd);
EXCEPTIOLNS
Invalid~id(fd);

EFFECTS
‘Current™ids() = Current~ids () DIFF {fd)};

END™MODULE

- 8] -

7. IMPLEMENTATIONM

The specifications given above do not define the implementation
details to get a runable version of the IP. In fact an attempt was
made while writing the specifications to leave individual
implementors as much freedom as possible. The final stages of HDM
are the implementation stages and each specific

implementation would need to carry them out.

In writing the specifications an attempt has been made to make the
difference between a host and a gateway, at the internet level, as
transparent as possible. For a host all of the modules defined will be
needed to some extent; although a particular implementation may make
some simplifying assumptions (e.g. all protocols above their IP
implementation will pass in packets which do not need to be fragmented
to be sent out using the local network). A gateway can be 1irplemented
using only a few of the modules: the Send frag, Recv frag and Inet rt
modules. Since gateways do not do reassembly they will not need
Reassemble. The Gateway-Gateway protocol would need to be refined since

the specifications give only an interface to it.

Ivplementors do not have complete independence from one another.
Many variables are exported from one module to another. The methodolofy
also requires certain cross-module checking to be done to show that the
implementation maintains the specified properties. The methodology also
assumeg that a common mechanism would exist for raising and handling
exceptions. There also needs to be an agreed upon representation for

built-in types (e.g. ASCII vs. EBCDIC). Most of these restrictions are

- 82 =

the type that a common compiler would introduce. Since this cannot be
assured 1in an internet environment the specification techniques should

be enhanced to allow such details to be specified.

The major problem which will occur in implementation is in areas
where the specification cannot be implemented in a cost-effective way.
The internet header checksum presents this type of problem. Ideally
the checksum would be a flag which is either true or false. As we
have neither perfect hardware nor perfect transmission media,
this cannot be implemented, only approximated. As specification
techniques 1improve it should be possible to include in the
requirements the level of confidence desired and include it as a part of

the specification.

The normal assumption made in a computer system is that the value
read from a menmory location is the same as the previous value stored
there. The hardware is not perfect the system incorporates error
checking/correcting circuits to bring the system reliabilitv to the
point vhere users normally trust the data from memory. A tradeoff 1is
made between cost and reliability. Similar tradeoffs must be made when
implementing protocols. In a manner analopous to parity the IP
concludes that a datagram is "good" if it passes the checksur test. The
depree of assurance is an implementation decision question. The IP
description recognizes this and provides the following guidance:

The checksum field is the 16 bit one’s complement of the one’s
complement of all the 16 bit words in the header... This is a
simple to compute checksum and experimental evidence indicates
it is adequate, but it 1s provisional and may be replaced by a

CRC procedure, depending on further evidence [Pos80].

- 83 -

Attempting to include the checksum as a function of the

representation of the fields in the header runs into a problem with

the specification technique. HDM defines the world in terms of

strongly typed objects. Since the actual bit representation is not
available the checksum algorithm cannot be defined except at a very 1low
level (a 1level at which the total datagram is represented as a
collection of bits). This 1is consistent since the checksur
algorithm does violate the concept of strong typing. (HDM is not
alone in having the particular problem; most specification

techniques depend on strong typing.)

The problem of checksumming unfortunately keeps cascading upward.
The Transmission Control Protocol kTCP), which runs on top of the IP,
also checksums. Because of this it cannot use the interface to the IP
which provides access only to virtual objects but must have access to

the actual physical representations.

The UDP will have a similar problem with the user {nterface to
the IP specified in section 4 even though that interface is intended
to provide true datagram service. The upp provides a checksum;
therefore, it too must have access to the physical representations

of the objects.

- 84 =

e —————

8. PROBLF!S ENCOUNTERED IN TIHE SPECIFICATION PROCESS
a. Problems Due to the Protocol Description
l. Physical addresses

Using physical addresses at the IP interfaces presents some

problems in the specifications. Since an address is visible to the
protocols above IP, any algorithm used to supply a mix of equivalent
physical addresses would have to be specified as a part of the visible
interface of IP because the effects of this algorithm could be used
by the protocol above 1IP. (It may not be a recommended practice to
use knowledge of this algorithm but systems prograrmers are
well-known for taking advantage of everything they can if they feel
they can use it to increase "efficiency”". Since the algorithr could be
so wused, the specification, to correctly model the IP, would have to
reflect the algorithm’s visibility.) Any change of this alporithm
would require reverificatiza ot all levels above to which this is

visible. The current specification of IP is such that SEND can supply

an address (whichi must be wvalidated) but 1{f it does not supply a
source address a detault will be used at the highest level. Those
higher level protocols which need to use phyvsical addresses will use

the Phys "addr level as the user interface.

2. Problems with Return Route Option (RRO)

RRO causes a prublem in decomposing the system into levels due to
the possibility of an undescrited interaction between RRO and the DF
flag. If a packet arrives at a gpateway with RRO requested, the DF flag

- 85 =

set and is at the maximum packet size for the next net {t s to enter

the IP description does not sive a well defined action to be taken. Two

actions are possible: discard the packet (i.e. add the RRO then, upon
discovering the packet cannot be sent on without fragmentation, discard
it as called out in the description) or send it on without adding the

route information. The specifications take the first action.

RRO can be of an unbounded length but the header can only be of 3
finite length. The description did not state what happened in the event
of overflow. It is also possible for the return route to have "holes"
in it. It could overflow at one point but have room at a later point in
its route because the SRO can shrink. In both cases information is lost
and it 1is not possible to differentiate bhetween a datagram with a
complete route and one with missing addresses. A reasonable action
seems to be to discard overflow and generate a CER. This is the
approach specified but it does not completely resolve the difficulties.
Since datagram transmission is unreliable the GER mav be lost so a host
receiving a datagram with the RRO cannot be sure that sore addresses

have not been lost on the way.

A possible change would be to generate a separate datagram (similar
to a General Error Report (GER)) to send the return route. Scre of

these may be 1lost as the datapram protocol 1is rnot a reliable

transmission protocol but this system does not have a maximum number of
addresses it can accomodate in the return route, whereas thte current
system can handle a maximum of nine addresses. It also solves all of

the problems detailed above with header overflow. Although some of the

- 86 -

route may be lost, it should be possible to adequately reconstruct frorm

the pieces that arrive {f the error free thruput of the system is

reasonable. The current system is not reliabhle due to overflow problems

and overflow, once it occurs, will continue.

3. The visibility of fragmentation

* There are four fields in the IP header dealinp with fragmentation

(Indentification (id), More fragments flag, Don’t fragment (DF) flag
and the fragment offset). In some sense fragmentation should not
appear at the Qser interface to IP. It is not part of the host-host
addressing but a gateway-host 1interaction; it should be
nidden by the TP interface. Unfortunately, the id field and the DF
flag need to be available at the wuser interface as the nprotocol

currently standse.

At first it seemed that the DF flag could be eliminated by keeping

i)

knowledge within the IP as to whether or not a host has reassembly

-

capabjility. However, tliere is at least one case where this status can
change. The net could be reloading a system which had crashed and its
bootstrap loader may not be able to handle fragmentation although the

normal svstem could [Posf0c].

The id field is an optional field at the user interface; if not

supplied the IP rust generate one. One clarification that should be
rade Is that a particular protocol must either always supply the ic
field or else never supply it. The above specifications have this

restriction though not having it is even easier to specify. It is added

- 87 -

4 - ¥ R) - .-
- .

to make unnecessary ruch complication which would be required in an

implementation in which 1ds could be supplied or not supplied by =he

higher level protocol at random.

If a higher level protocol is suppling ids to the IP care must be
exercised to prevent reassembly problems. Since the concatenation of
source address|destination address|protocol|id must uniquely identify
a packet for purposes of fragment reassembly, it requires that
rultiple instantiations of the same higher 1level protocol which

supplies the id must cooperate to prevent a possible: fragment rix=-up.

b. Problems Due to the Methodology

l. Data representation

For the most part the data structures provided ty Special proved
adequate to the task. The major problem occurred in representing the
network as it appears to the IP. The existence of rultisets as a
predefined type would have made the specification simpler and easier to

understand.

2. Assertion language

A rore serious problem is the lack of a unified approachk to handle
the global assertion about the system. No tools exist to handle such
assertions except for those that check the assertion for the KSCS
security model. This shortcoming is well recognized by SRI and work is
being done to give HDM the capability to handle the proof steps recuired

by the vO stase of the me*hodology.

- 88 -

It would also be useful ¢to organize the assertions so that

properties about the system could be easily found. The specification
should state the axioms which are the basis of the proof and the

assertions which the system being developed 1s to maintain.

3. Specification environment

Another problem which exists with using HDM is a lack of wunity in

. its support tools. The difficulties experienced in maintaining
consistancy among modules and versions reaffirmed the author’s belief

that an integracted environment is needed to develop software. SRI is

working to p.oduce an integrated specification and verification

environment tur the results of the current SRI effort were not

available.

4. Exception handling

The HDM model for exception handling is that the only observable
eftect when a function raises an exception is the passage of time. In
the: protocoi area this may need to be modified. Example - packet gets

duplicated, one gets through, other gets an exception.

9. CONCLUSIONS

Formal specification techniques can be ised to specify
commurifications prococols although there are many areas in which the
specification techniques must be improved to allow complete

specification and verification.

- B9 -

31038 prdvides a pood methodological framework in which to

investipate protocol specification. Many shortcomings +~xist in the
machine support for HDM but the whole area of verification
environments is still a field of research. Planning is underway to
start an effort to develop a reasonable environment based on the
concepts of a number of verification systems each of which has its

strong and weak points.

As noted above, HDM also has weaknesses as a methodology for
developing protocols. Work 1is needed to either integrate parts of
other existing efforts or develop improved techniques where no existing

methodology solves the problenm.

There are three clear areas in which progress is needed to allow
more complete formal specifications of protocols. First, rnathematical
modeling techniques for protocols must be improved so that the
requirements can be completely and clearly expressed. Second,
specification techniques must be aupmented to 1include time as a
parameter. The work on temporal logic beinpg done at SRI and Stanford
University [Lam80, HO80] is a start in this area. Third, specifications
'

rust be able to handle details such as checksurs (which "pull apart'

data types) in a reasonable way.

The specification of a protocol is an evolving process for two
reasons: improvements 1in specification techniques and changes 1in
protocol functionality. Both of these require modifications to the
protocol’s formal specification. One definite requirement will be a

good programming language to keep the amount of work tractable.

- 90 -

AD-A100 189 ON THE FORMAL SPECIFICATION OF COMPUTER COMMUNICATION J/,-
PROTOCOLS{U) MARYLAND UNIV COLLEGE PARK DEPT OF
COMPUTER SCIENCE K F SHOTTING DEC 80 TR-973

UNCLASSIFIED AFOSR-TR-81-0491 AFOSR-78-3654 F/G 9/2 NL

flie
|

2

|||

1.25

el)
el
C ol ==
£ 20

1.8

nﬁg‘

i e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

Finally it would be wuseful to 1implement a version of the 1P
accordinp to the formal specification then verify the irplerentation.
It would be interesting to compare the results of such an effort with
other IP implementations. Major areas for comparison could include time
to implerent, time to test, performance characteristics, and problers
found in the running code ~- both in functionality covered by the formal

specifications and also in areas not so covered.

~ 9] -

L RS L S PO S
: 4

GCLUSSARY
PF Don’t Fragment flay.
FTr File Transfer Protocol
HDM Hierarchical Development Methodology.
THL Internet Header Length - length of the internet protocol
header in octets.
1P (DoD Standard) Internet Protocol.
KSO0S Kernelized Secure Operating System.
MF More-Fragments flag.
MTIU Maxirum transmission Unit - maximum size of a fragment]

which a network can transport.

NCP Network Control Frogran
PSOS Provably Secure Operating System.
PUP An Internetwork Architecture of the Xerox Palo Alto i

Research Center.

RPO Return Route Option -~ provide a record of the route this
datagram took in transmission. Also interpretated as
Record Route Option.

SPECIAL SPECIfication and Assertion Language - A nonprocedural
language associated with HED!M.

SRO Source Route Option - provide a list of addresses a
datagrar is to be routed through.

TCP (DoD Standard) Transmission Control Protocol.

TOS Type Of Service - Field in the IP header.

TTL Tirme To Live - Field in IP header.

urp User Datagrar Protocol.
|
[
1

-92 - ,

e, e AWM TR, TR e - e e - '
h .

RIZLIOCPAPHY

Boa G0
Bogps, D., et. al., "Pup: An Internctwvork Architccture', 1IIFE
Transactions on Corrunications, pp. 612-A24, Apr 10&C.

ED7¢&
Berson, T. and Dronrowski, P., "Formal Specifications for 6.0
UNIX", Version 3.0, WDL-TP7622, Jun 1978.

Y78
Boyer, R. S., and lloore, J. S., "A Formal Semantics for the SRI
Program Design Methodology'", Technical Report, SRI Computer Science
Laboratory, Nov 1978.

Cer76&
Cerf, V., "IEN 48- The Catenet Model for Internetworkine”, Jul
1678.

Coh79
Cohen, D., ed., "IEN 126- Summary of tne ARPAnet/Lthernet Comrunitv
leeting'", Nov 1979.

Coh€0
Cohen, D., "IEN 137- On Holy Wars and a Plea for Peace", Apr 1980.

CGH!: 80
Cheheyl, M., Gasser, M., Huff, C. and !'illen, J., "Secure Systen
Specification and Verification: Survey of Methodologies', MTR=-3004,
The MITRE Corp., Bedford, MA., Feb 1980.

CK78
Cerf, V. G. and Kirstein, P. T., "Issues in Packet-Network
Interconnection”, Proceedines of the IEEE, MNov 1978.

D168
Dijkstra, E., "The Structure of TVE iluitiprogramming Syster', CACl!
11, pp. 341-346, 'May 1968.

Div80
Divito, B., Private communication.

FACT78

"KSOS Computer Program Development Specification (Type BS):
Security Kernel", UDL-TR7932, Ford Aerospace and Corrmunications
Corp., Palo Alto, CA, Sept. 1978.

- 03 «

GCoo77
Cood, D. I., et. al., "Constructing Verifiably Reliable and Secure
Communications Processing Systems', ICSCA~CMP-6, The University of
Texas at Austin, Jan. 1977.

Coo78
Cood, D. I., et. al., "Cypsy 2.0", ICSCA-C!IP-10, The University of
Texas at Austin, Jul. 1978.

cw79
Cerhart, S., and Wile, D., "The DELTA Experirent: Specification and
Verification of a Multiple-User File Updating !odule", Proceedings
of the Specifications of Reliable Software J<onference, 1EEE
Computer Society, Apr. 1979.

HO80
Hailpern, B. and Owicki, S., ‘Verifying lNetwork Protocols Using
Temporal Logic", Computer Svstems Laboratory, Stanford Universitv,
May 1980.

Kem79
Kemmerer, R., "Verification of the UCLA Securitv Fernel: Abstract
ifodel, Mappings, Theorem Ceneration and Proof', PhD. Thesis, UCLA,
1979.

Lam80
Larport, L., Sometimes’ is sometimes “not never’: On the Temporal
Logic of Proerams'", 7th ACM Sympesium on the Principles of
Programming Lanpuages, pp. 174-185, Jan 1980.

Hne

Luc79
Luckham, D. C., et. al., "Stanford Pascal Verifier Users !Manual",
STAN=-CS=-79-731, Computer Science DNept., Stanford University, !lar
1979.

LRS79
Levitt, K., Robinson, L., and Silverberg, B., "The HDI! Handbook,
Volure III: A Detailed Example of the Use of KDM", SRI Report on
Contract N00123-76-C-0195, Jun 1979.

Yeu76
Meumann, P. G., Private communication.

Neu77?
Neumann, P. G., et. al., "A Provably Secure Operating: The Syster,
Its Applications, and Proofs", Final Report = SRI Project 25f¢l,
tfenlo Park, Ca., Feb. 1977.

- 04 =

Par72
Parnas, . L., "A Technique for Software !'odule Specification with
Examples', CACM 15, pp. 330-336, May 1972.

Pol80
Polak, V., "Theory of Corpiler Specification and Verification", PhD
Thesis, Stanford University, Apr 198C.

Pos79
Postel, J., "IEN 88~ User Datagram Protocol", May 1979.

Pos&Qa
Postel, J., ed., "IEN 128- DoD Standard Internet Protocol", Jan
1980.

Pos80b

Postel, J., ed., "IEN 129~ DoD Standard Transrmission Control
Protocol", Jan 19&0.

Pos80c
Postel, J., Private cormmunication.

Pos80d
Postel, J., "Internetwork Protocol Approaches", IEEE Transactions
on Communications, pp. 612-624, Apr 1980.

Rob79
Robinson, L., "The HD!! Handbook, Volume I: The Foundations of HDM",
SRI Report on Contract N00123~76-C-0195, Jun 1979.

RR77
Roubine, 0., and Robtinscn, L., Special Reference Manual, Stanford
Research Institute Technical Report, CSC 45, Jan. 1977.

Ser79
Strazisar, V. "IEN 109~ How to Build a Gateway", Auc. 1979.

Sun78
Sunshine, C., '"Survey of Protocol DRefinition and Verification
Techniques", ACM Computer Communication Review, Jul 197§,

Sun79
Sunshine, C., "Formal Techniques for Protocol Specification and
Verification", IEEE Computer Society Magazine, Sep 1979.

Sun80

Sunshine, C., "Axioms for the Alternating Bit Protocol"”, Affirr
lemo=17-Cas, Feb 1980.

-95 -

SLR79
Silverbere, R., Levitt, K. and Robinson, L., "The !DM Iltandbook,
Volume 1I: The Languages and Tools of HDM'", SRI Report on Contract
NQO0123-76-C~0195, Jun 1979.

Tho79
Thompson, D., ed., "AFFIRM PReference Manual", USC Information
Sciences Institute, Nov 1979.

TAL?9
Thareja, A., Agrawala, A., and Larsen, R., '"Forral Approaches to
Protocol design and Implermentation: A Survey', TR-840, University
of Maryland, Dec 1979.

'el76
Wells, PR., "Specification and Trplerentation of a Verifiable
Conrunications System', ICSCA-CHP-4, The University cf Texas at
Austin, Dec 1976.

V'en?6- ©
Vlensley, J., Creen, M., Levitt, ¥., Shostak, R., ‘“The Tesign,
Analysis, and Verification of the OSIFT Fault-Tolerant lystenm”,
Second International Conference on Software Onpineering, San
Francisco, CA, Oct 19706.

X.75
CCITT Recommencdation X.75 (provisionally adopted), '"2.73 Terrinal
and transit call control procedures and data transfer systors on
international cfrcuits between packet-switched data networks",
International Telecomrunication Union, CGeneva, 1979,

\

- Y -

END

- DATE
FILMED

.5 —=83°
- DTIC

R TR M B Ty ey e == St e e e e T T T ———— E—

|

